
Python Programming

Simplified
An Absolute Beginners Guide

VIKAS THADA

2024

RSYN RESEARCH
India

RSYN RESEARCH
TEXTBOOK

RSYN RESEARCH LLP, Indore, India

Python Programming Simplified: An Absolute Beginners Guide

ISBN: 978-81-979716-7-9

Author: Vikas Thada

Second Edition, 2024

© 2024, RSYN RESEARCH LLP, All Rights Reserved.

This book has been published with all reasonable efforts taken to make the material error-free after the author's consent. No part of this book shall be used or

reproduced in any manner without written permission from the publisher, except for brief quotations embodied in critical articles and reviews.

The Author(s) of each chapter in this book is(are) solely responsible and liable for its content, including but not limited to the views, representations,

descriptions, statements, information, opinions, and references [“Content”]. The Content of this book shall not constitute or be construed or deemed to reflect

the opinion or expression of the Publisher or Editor. Neither the Publisher nor Editor endorse or approve the Content of this book or guarantee the reliability,

accuracy or completeness of the Content published herein and do not make any representations or warranties of any kind, express or implied, including but

not limited to the implied warranties of merchantability, fitness for a particular purpose. The Publisher and Editor shall not be liable whatsoever for any errors

or omissions, whether such errors or omissions result from negligence, accident, or any other cause or claims for loss or damages of any kind, including without

limitation, indirect or consequential loss or damage arising out of use, inability to use, or about the reliability, accuracy or sufficiency of the information

contained in this book.

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

T&C applies.

Digital download and online

books.rsyn.org

rsynresearch.com/books/

Published in India

by RSYN RESEARCH LLP, Indore, India

ww.rsyn.org

978-81-979716-7-9

https://creativecommons.org/licenses/by-nc-nd/4.0/?ref=chooser-v1

Preface

Completing a book is an arduous task besides fun. It is like a long journey with sleepless nights. During this
journey of the book which is completed now many persons have helped me directly or indirectly. First &
foremost I would like to thank Almighty for giving the mental strength and potential for writing the book.
I’m indebted to various authors whose books I’ve consulted to prepare this book, though a large portion of
the text is from my own experience teaching this subject number of times. Special thanks go to google search
engine for providing fast and accurate searching on various keywords. I thank all my friends ,colleague ,
HOD, Director and all higher authorities at Amity University MadhyaPradesh

I also thank my mother, my wife without their support writing this book was not possible. In the end I’d like
to thank my sweet daughter ‘Parishi’ and my son ‘Chinmay’ whose one smile takes all my fatigue away and
rejuvenate me after a tiresome work.

I also thank my lots of student whose conceptual queries and ideas helped me in strengthening the concepts
and problems of data structures.

Organization of the book: The book has been divided into 14 chapters. Each chapter has been written with
clear understanding of the subject matter and with numerous examples to try practically. The selection of 14
chapters have been done so that it gives you knowledge of all essentials topics related to Python programming
lectures.

I hope to take out a second version of the book covering some advanced topics that have not become part of
this book.

Though every program/script has been run before making it part of the book, but for any error if you find in
the book, feel free to brought to my notice. Except any error, I welcome any suggestion if you feel to improve
the book in the coming versions.

You can contact me at: vikasthada@rediffmail.com

 Table of Contents
1. Starting With Python

 1.1 PYTHON OVERVIEW .. 1

 1.2 FEATURES OF PYTHON ... 1

 1.3 INSTALLING ANACONDA ... 1

 1.4 OTHER OPTIONS .. 10

 1.5 WORKING WITH JUPYTER NOTEBOOK .. 10

 1.6 PYTHON SHELL ... 16

 1.7 WRITING FIRST PYTHON SCRIPT .. 22

 1.8 PYTHON CHARACTER SET .. 25

 1.9 PYTHON TOKENS .. 26

 1.9.1 KEYWORDS ... 27
 1.9.2 IDENTIFIER .. 27
 1.9.3 LITERALS... 28
 1.9.4 STRINGS .. 36
 1.9.5 OPERATORS ... 36
 1.9.6 SPECIAL SYMBOLS ... 36

 1.10 VARIABLES ... 36

 1.11 DATA TYPES ... 37

 1.11.1 NUMBERS... 38

 1.11.2 LIST ... 39

 1.11.3 STRINGS ... 40

 1.11.4 SET .. 41
 1.11.5 DICTIONARY .. 42

 1.12 INDENTATION IN PYTHON... 42

 1.13 PYTHON COMMENTS... 43

 1.14 PYTHON STATEMENTS ... 44

 1.14.1 MULTILINE STATEMENTS .. 45

 1.15 THE PRINT FUNCTION .. 46

 1.16 READING INPUT FROM USER.. 49

 1.17 TYPE CONVERSION .. 51

 1.18 SCRIPTING EXAMPLES ... 53

 1.19 WHY LEARN PYTHON?.. 55

 1.20 COMPANIES USING PYTHON .. 55

 1.21 POINTS TO PONDER ... 56

2. Operators & Expressions

 2.1 INTRODUCTION... 57

 2.1.1 BINARY OPERATORS ... 57
 2.1.2 UNARY OPERATORS .. 57

 2.2 EXPRESSIONS ... 57

 2.3 ARITHMETIC OPERATORS .. 58

 2.3.1 THE STRING OPERATORS (+ AND *) .. 60
 2.3.2 SCRIPTING EXAMPLES ... 61

 2.4 RELATIONAL OPERATOR .. 64

 2.5 LOGICAL OPERATORS .. 66

 2.5.1 LOGICAL AND .. 66
 2.5.2 LOGICAL OR... 67
 2.5.3 LOGICAL NOT (!) .. 68
 2.5.4 SHORT CIRCUIT OPERATORS .. 68

 2.6 ASSIGNMENT OPERATOR .. 69

 2.7 BITWISE OPERATORS ... 71

 2.7.1 BITWISE AND (&) ... 71
 2.7.2 BITWISE OR (|) .. 73
 2.7.3. BITWISE XOR (^).. 74
 2.7.4. 1’S COMPLEMENT (~) .. 76
 2.7.5. LEFT SHIFT OPERATOR (<<) ... 77
 2.7.6. RIGHT SHIFT OPERATOR (>>) ... 78

 2.8 MEMBERSHIP OPERATOR ... 81

 2.9 IDENTITY OPERATOR ... 82

 2.10 PRECEDENCE OF OPERATORS ... 84

 2.11 RVALUE AND LVALUE .. 87

 2.12 THE MATH MODULE .. 88

 2.13 POINTS TO PONDER ... 91

3. Decision Making

 3.1 INTRODUCTION... 93

 3.2 THE IF STATEMENT .. 93
 3.2.1 SHORT HAND IF .. 95

 3.3 THE IF-ELSE STATEMENT .. 95

 3.3.1 SHORT HAND IF-ELSE ... 99

 3.4 NESTING OF IF-ELSE’S .. 100

 3.5 ELSE-IF LADDER ... 103

 3.6 PONDERABLE POINTS ... 110

4. Looping

 4.1 INTRODUCTION... 111

 4.2 THE WHILE LOOP.. 111
 4.2.1 NESTING OF WHILE LOOP ... 121

 4.3 BREAK STATEMENT .. 122

 4.4 THE CONTINUE STATEMENT .. 124

 4.5 THE FOR LOOP... 125

 4.5.1 THE RANGE FUNCTION ... 125

 4.6 NESTING OF FOR LOOP .. 131

 4.7 THE PASS STATEMENT ... 137

 4.8 PONDERABLE POINTS ... 138

5. Functions

 5.1 INTRODUCTION... 139

 5.2 THE FUNCTION SYNTAX .. 139

 5.3 EXAMPLES OF FUNCTION .. 140

 5.4 ILLUSTRATIVE EXAMPLES ... 141

 5.5 PASSING PARAMETERS TO FUNCTIONS ... 143

 5.6 FUNCTION WITH PARAMETERS AND RETURN TYPE ... 149

 5.7 THE DEFAULT RETURN TYPE ... 153

 5.8 FUNCTION WITH DEFAULT ARGUMENTS .. 154

 5.9 CALL BY NAME .. 158

 5.10 RETURNING MORE THAN ONE VALUE .. 159

 5.11 GLOBAL VARIABLES IN FUNCTIONS ... 160

 5.12 PASSING FUNCTION AS ARGUMENT .. 164

 5.13 PASSING VARIABLE ARGUMENTS TO FUNCTIONS ... 166

 5.13.1 THE KEYWORD ARGUMENTS (**KWARGS) ... 168

 5.14 RECURSION .. 170

 5.15 THE TOWER OF HANOI PUZZLE. ... 175

 5.15.1 SOLUTION AS RECURSIVE ALGORITHM .. 175

 5.16 THE LAMBDA FUNCTION ... 177

 5.16.1 THE MAP FUNCTION ... 178
 5.16.2 THE FILTER FUNCTION ... 180
 5.16.3 THE REDUCE FUNCTION ... 180

 5.17 PONDERABLE POINTS ... 181

6. Strings

 6.1 WHAT IS PYTHON STRING ? .. 183

 6.2 CREATING STRINGS .. 183

 6.3 ACCESSING STRING ... 184

 6.4 STRING SLICING ... 185

 6.5 STRING OPERATORS ... 186

 6.6 STRING TRAVERSAL .. 187

 6.7 STRING IS IMMUTABLE .. 190

 6.8 STRING COMPARISON... 191

 6.9 METHODS OF STRING CLASS.. 192

 6.10 THE FORMAT METHOD .. 201

 6.10.1 POSITIONAL ARGUMENTS IN FORMAT FUNCTION ... 201
 6.10.2 NUMBER FORMATTING .. 202
 6.10.3 NUMBER PADDING .. 203
 6.10.4 STRING FORMATTING .. 205
 6.10.5 KEYWORD ARGUMENTS ... 207

 6.11 PONDERABLE POINTS ... 207

7. List

 7.1 INTRODUCTION... 208

 7.2 CREATION OF LIST ... 208

 7.3 ACCESSING ELEMENTS FROM LIST ... 208

 7.4 LIST SLICING ... 208

 7.5 MODIFYING LIST .. 210

 7.5.1 UPDATING LIST ... 210
 7.5.2 ADDING ELEMENTS TO LIST .. 210
 7.5.3 REMOVING ELEMENTS FROM LIST .. 212

 7.6 OPERATIONS ON LIST ... 213

 7.6.1 OPERATOR + WITH LIST ... 213
 7.6.2 OPERATOR * WITH LIST ... 214
 7.6.3 THE MEMBERSHIP OPERATOR ON LIST ... 214

 7.7 LIST TRAVERSAL ... 214

 7.7.1 LIST TRAVERSAL USING WHILE LOOP ... 215
 7.7.2 TRAVERSING LIST USING FOR LOOP ... 216

 7.8 OTHER LIST METHODS ... 218

 7.8.1 THE COPY METHOD .. 218

 7.8.2 THE SORT METHOD .. 219
 7.8.3 THE CLEAR AND COUNT METHOD .. 220

 7.9 GENERAL METHODS APPLIED ON LIST .. 220

 7.9.1 THE MAX,MIN,SUM FUNCTIONS ... 220
 7.9.2 THE ALL AND ANY FUNCTION .. 221
 7.9.3 THE SORTED METHOD .. 221
 7.9.4 THE ENUMERATE METHOD ... 221

 7.10 LIST INPUT .. 222

 7.11 LIST AND FUNCTIONS ... 225

 7.12 LIST COMPREHENSION .. 227

 7.13 PONDERABLE POINTS ... 232

8. Dictionary

 8.1 INTRODUCTION... 233

 8.2 CREATING DICTIONARIES .. 233

 8.2.1 RESTRICTION ON KEYS .. 234

 8.3 ACCESSING ELEMENTS .. 235

 8.4 ADDING AND MODIFYING ELEMENTS IN DICTIONARY .. 236

 8.5 REMOVING ELEMENTS FROM DICTIONARY .. 236

 8.6 TRAVERSING DICTIONARIES ... 238

 8.6 METHODS OF DICTIONARY CLASS ... 239

 8.8 MEMBERSHIP TESTING IN DICTIONARY .. 242

 8.9 SCRIPTING EXAMPLES ... 242

 8.10 DICTIONARY COMPREHENSION ... 244

 8.11 PONDERABLE POINTS ... 245

9. Tuple

 9.1 INTRODUCTION... 246

 9.2 CREATING TUPLES .. 246

 9.3 ACCESSING TUPLE ELEMENTS .. 247

 9.4 MODIFYING TUPLE ELEMENTS ... 248

 9.5 DELETING TUPLE ELEMENTS .. 248

 9.6 OPERATIONS ON TUPLE ... 249

 9.6.1 TUPLE CONCATENATION .. 249
 9.6.2 TUPLE REPETITION .. 249
 9.6.3 TUPLE MEMBERSHIP ... 249
 9.6.4 TUPLE COMPARISON .. 250

 9.7 PONDERABLE POINTS ... 252

10. Modules in Python

 10.1 INTRODUCTION ... 253

 10.2 THE FIRST PYTHON MODULE .. 253

 10.3 RELOADING THE MODULE .. 255

 10.4 IMPORTING IN ANOTHER SCRIPT .. 256

 10.5 UNDERSTANDING IMPORT .. 256

 10.6 THE SEARCH PATH FOR MODULE .. 257

 10.6.1THE PYTHONPATH VARIABLE .. 258
 10.6.2 ADDING PATH TO SYS.PATH .. 258

 10.7 THE DEFAULT MODULE ... 259

 10.8 THE MAIN PROGRAM .. 260

 10.9 PONDERABLE POINTS ... 261

11. Classes & Objects

 11.1 INTRODUCTION ... 262

 11.2 ADDING MEMBERS ... 263

 11.3 INITIALIZING OBJECT .. 264

 11.3.1 DEFAULT CONSTRUCTOR .. 265

 11.4 PASSING AND RETURNING OBJECTS TO FUNCTIONS .. 267

 11.5 ARRAY OF OBJECTS .. 270

 11.6 STATIC MEMBERS IN CLASS ... 272

 11.7 STATIC METHODS .. 274

 11.8 CLASS METHOD .. 276

 11.9 PONDERABLE POINTS ... 278

12. Inheritance

 12.1 INTRODUCTION ... 279

 12. 2 TYPES OF INHERITANCE ... 279

 12.2.1 SINGLE LEVEL INHERITANCE ... 280
 12.2.2 MULTILEVEL INHERITANCE ... 280
 12.2.3 MULTIPLE INHERITANCE ... 281
 12.2.4 HIERARCHICAL INHERITANCE ... 281
 12.2.5 HYBRID INHERITANCE ... 282

 12.3 SINGLE AND MULTILEVEL INHERITANCE IN PYTHON ... 283

 12.4 MULTILEVEL INHERITANCE .. 286

 12.5 MULTIPLE INHERITANCE .. 287

 12.6 HIERARCHICAL INHERITANCE ... 291

 12.7 METHOD OVERRIDING ... 293

 12.8 THE SUPER() METHOD ... 294

 12.9 CONSTRUCTOR (INITIALIZER) & INHERITANCE .. 295

 12.10 ABSTRACT BASE CLASS .. 299

 12.11 VISIBILITY MODIFIERS IN PYTHON ... 305

 12.12 FINAL CLASS .. 306

 12.13 THE DIAMOND PROBLEM .. 306

 12.14 COMPOSITION OR CONTAINERSHIP .. 310

 12.15 PONDERABLE POINTS ... 311

13. Exception Handling

 13.1 INTRODUCTION ... 312

 13.2 BASIS FOR EXCEPTION HANDLING .. 312

 13.3 EXCEPTION HIERARCHY ... 313

 13.4 SOME EXAMPLES OF EXCEPTIONS .. 314

 13.5 EXCEPTION HANDLING MECHANISM ... 315

 13.6 PYTHON STACK TRACE .. 316

 13.7 EXCEPTION HANDLING USING TRY AND EXCEPT .. 317

 13.7.1 TRY-EXCEPT WITH MULTIPLE EXCEPTIONS .. 320
 13.7.2 CATCHING EXCEPTIONS WITH EMPTY EXCEPT .. 321
 13.7.3 CATCHING ALL EXCEPTIONS USING EXCEPTION CLASS .. 322
 13.7.4 RAISING EXCEPTION .. 323
 13.7.5 NESTING OF TRY EXCEPT BLOCK ... 324

 13.8 THE FINALLY BLOCK .. 325

 13.9 CREATING YOUR OWN EXCEPTIONS... 327

 13.10 PONDERABLE POINTS ... 329

14. File Handling

 14.1 INTRODUCTION ... 330

 14.2 FILE OPENING, READING AND CLOSING .. 330

 14.3 FILE OPENING MODES .. 332

 14.4 READING FROM FILE .. 333

 14.4.1 THE READ FUNCTION ... 333
 14.4.2 THE FUNCTION READLINE AND READLINES .. 334

 14.5 WRITING TO FILE ... 335

 14.5.1 READING AND WRITING ... 336
 14.5.2 APPENDING DATA TO FILE ... 337

 14.6 WORKING WITH MULTIPLE FILES ... 337

 14.7 RANDOM ACCESS IN FILE .. 339

 14.8 WORKING WITH NUMBERS ... 340

 14.9 WORKING WITH BINARY MODE .. 342

 14.10 FILES AND OBJECTS .. 344

 14.10.1 PICKING OBJECTS .. 344
 14.10.2 THE DILL MODULE ... 346

 14.10 PONDERABLE POINTS ... 348

Python Programming Simplified

1

1. Starting with Python

1.1 Python Overview

Python is a general purpose and widely used high-level programming language created by Guido van

Rossum in 1991.Python is an interpreted language that has features of procedural, object oriented and

functional programming language. Python has a rich set of libraries, so it can be used for solving

almost any type of programming problem related to fields like general purpose programming,

developing websites, data science, robotics, game creation, security and cryptography, deep learning

etc.

Contrary to its name Python is not scary language! Instead, the name was adopted from a British

comedy series "Monty Python's Flying Circus".

Python interpreters are available for almost all types of operating systems like Windows, Linux, Mac.

Some of the major companies that uses Python are Google, Microsoft, Yahoo, IBM, Dropbox, Mozila

etc.

1.2 Features of Python

The features of Python are so many, and all these will be clearly visible as you spend your time with

Python. Some of the important features are mentioned here:

✓ Python offers automatic memory management.

✓ Python is Written in C.

✓ Python is a dynamic interpreted language which has many strong features of various languages.

✓ It is an Object-oriented programming language.

✓ Python is open source.

✓ Python can be embedded into Hypertext Markup Language (HTML).

✓ Python has similar syntax to that of many programming languages such as C and Perl.

✓ Python is easy to learn because of simple English like syntax.

✓ It has features of Procedural, functional and object-oriented programming language.

1.3 Installing Anaconda

Python Anaconda Framework is one single solution for performing all your python related tasks. It

bundles together number of other application programs / modules which are required for applications

like graphics programming, machine learning, deep learning, game programming, robotics, internet of

Python Programming Simplified

2

things etc. The two main applications in which we will be interested and using in this book are:

Ipython and Jupyter Notebook.

The main reason for using anaconda framework is that it is now become standard for python related

tasks specially for data science, machine learning and deep learning. Second everything comes bundled

with Anaconda. You do not need to install separately most of the modules. Even if you need it just need

one or two commands with Internet connection.

In this section we see how we can get Anaconda from web and install on our windows system.

1. Type “anaconda python download” in Google search and right click “Open in new tab” the first result.

2. The page that is opened now is shown in the next figure. Now click on “Download Anaconda” shown in

red rectangle.

Python Programming Simplified

3

3. You’ll have to scroll a bit down to see the next figure 3. Here you can download 64 bit or 32 bit

Anaconda 5.2 Windows Installer but don’t forget to choose Python 3.6 version. The Installer size is large

(613 MB for 64) so it may take some time to download.

4. After downloaded you’ll have file like: Anaconda3-5.1.0-Windows-x86_64.exe. Just double click the

file and you’ll have the next figure 4

Python Programming Simplified

4

5. Click Next to continue the installation

Python Programming Simplified

5

6. Select I Agree in the previous figure to get next figure. Here you can decide who is going to use installed

Anaconda, either its you or everyone. I’ve selected ‘Just Me’ option.

Python Programming Simplified

6

7. After selecting your option and pressing next button you’ll have choose destination folder where

Anaconda will be installed. For selection of different folder you can browse the location by clicking

Browse button. On my system I’ve used the path: C:\Anaconda3.

8. Finally the last screen before installation begin will appear after you press next button in previous figure.

Here select the first option (tick mark) for setting the path and adding necessary anaconda files /folder to

your system environment variable PATH.

Python Programming Simplified

7

Finally click install and in few minutes it will be installed.

9. To verify the successful installation you can perform many checks :

First Check

Just click start /windows icon button and see in Program files. You will find it :

Python Programming Simplified

8

Second Check

Open command prompt by pressing “Win Logo+R” and type cmd:

Python Programming Simplified

9

Click OK and you will be in command prompt. There just type python. Assuming the python

executable is added to the environment variable PATH. You’ll see following screen with python

default prompt ”>>>”. This is known as primary prompt. Python also has secondary prompt “…” when

you want your code to span multiple lines in shell. You’ll see this later in this chapter. For the time

being just make use of print function as shown in the figure below:

To come out from python shell just type: exit()

Third Check

Just type : anaconda-navigator at the command prompt. It will take some time to launch. It’s a

command based tool to launch number of other applications like Spyder, Jupyter Notebook etc. Some

of them may be installed and other need to be installed.

Python Programming Simplified

10

1.4 Other Options

The other alternatives to Anaconda, if you simply want to work with python are installing any

popular python IDE like PyCharm Community Edition , Wing Python IDE, Eclipse with Python

plugin. Other than these two, you can also make use of Spyder IDE that comes with Anaconda. Simple

editors (but not full fledged IDE) like visual studio code, Atom, Sublime editors, notepad++ etc can be

used. For this book we have used both Jupyter notebook and PyCharm Community Edition.

1.5 Working with Jupyter Notebook

The Jupyter Notebook is a file with extension ‘.ipynb’ which stands for interactive python

notebook. It’s a web application so to open it you need to have a web server which gets installed when

you install jupyter notebook into system. It comes integrated with Anaconda Framework.

The notebook can be used for creating interactive code in python along with html, images, plots,

latex, machine learning and deep learning tools etc. Much discussion of jupyter is beyond the scope of

the book. For more details just google it or follow link: http://jupyter.org/

We’ll just stick ourselves as how to use it anaconda and how to share code using it.

To run jupyter from command line just go to any directory where you are jupyter notebooks saved or

you want to save the new ones. Here in the following figure we are in mypthon directory under E:. Now

type at the command prompt: jupyter notebook

The above command starts the server.

http://jupyter.org/

Python Programming Simplified

11

You’ll see the contents like shown in the following figure:

Immediately after this the application going to launch in your default web browser. If you want to

run the web application in some another web browser just copy past the line that start with

http://localhost:/8888...... . You will see the following figure then:

Here the figure shows the contents of the directory “E:\mypthon”. To create a new jupyter

notebook click on New and select Python 3.

http://localhost/8888

Python Programming Simplified

12

You will have a new jupyter notebook opened for you with the name Untitled. The jupyter

notebook consists of number of cells which can be inserted or deleted. You have to type the code inside

the cells and for execution press “Shift+Enter”. Try to create one now and type some code as shown in

the figure given below:

Python Programming Simplified

13

The advantage of Jupyter Notebook is that you can write any amount of code, including Python,

HTML, Markdown, or any other language (Jupyter supports 40 languages to work with). The code

remains in the notebook cells. You can modify them and rerun by pressing shift+enter.

Once we have written some code inside our newly created notebook, we can save it by new name

instead of default “Untitled”. Just click on File and select Rename.

Python Programming Simplified

14

Give a new name to your jupyter notebook and click Rename. Your jupyter notebook is now

renamed.

Python Programming Simplified

15

Your juptyer notebook will be found in current directory as:

Python Programming Simplified

16

If you have any other notebook downloaded from web, the same can be uploaded to your notebook

tree by just uploading it using Upload button next to New. Other way is to just copy it in current

directory i.e. E:\mypython. It will be visible in the tree.

1.6 Python Shell

Python provides an interactive command line interface for running python statements, commands,

functions etc. It’s the python interpreter who interprets commands written in python thus the interpreter

in command mode is python shell.

I assume you have followed the instructions above for setting up your python environment. Start

python shell by typing: python at command prompt.

Python Programming Simplified

17

Now see the shell session with some of the commands typed in python shell:

>>> print("Hello Python")

Hello Python

>>> s='I love python'

>>> print(s)

I love python

>>> x=10;y=20

>>> print('sum of',x,'and',y,'is',x+y)

sum of 10 and 20 is 30

>>> sum=x+y

>>> print(sum)

30

>>> 2+3

5

>>> _

5

>>> sum

30

>>> _

30

>>> _ * 2

60

Congratulations on your first tryst with python shell. If in any case your python shell does not start,

then it may be the path issue or some other issue. For path related issues just include python executable

file in your path environment variable. This is shown in my laptop:

Python Programming Simplified

18

The file python.exe is present in C:\Anaconda3 and ipython (we will cover it later) is in

C:\Anaconda\Scripts.

Setting up Path

If you have not set the path earlier during anaconda installation, you can do it now by following the

steps:

1. Right click of My Computer of This PC and select Properties:

Python Programming Simplified

19

2. Then in the next window that open select “Advanced system settings”.

Python Programming Simplified

20

3. Next select “Environment Variables” as shown by red rectangle in the following figure.

4. In the next windows select Path under System Variables and click Edit:

Python Programming Simplified

21

5. Add Path for Python executables as highlighted in blue and indicated by red both by selecting

New and browsing for the files.

Python Programming Simplified

22

1.7 Writing First Python Script

After having our first meeting with python shell, lets write our first script in python. For that you can

use any editor. You can try notepad, notepad++, sublime, PyCharm or WinIDE or Spyder editor. As

this is our first script you can just be happy with notepad.

Just create one folder by the name “mypython” in any of your favorite drive other than C: drive. Now

open notepad by typing “Win (logo) +R” and typing “notepad” in it without quotes.

Python Programming Simplified

23

This will open the notepad window. Now type the following in it:

print(“Hello Python”)

Now save it by selecting “save as” from File menu in your folder : “mypython” by the name “first.py” .

You can choose any other name , but extension must be “.py”.

Python Programming Simplified

24

One important point to remember is that In “Save as type” box you have to change from text files to All

Files (*.*) else your file be saved as: first.py.txt.

Once you have done this and assuming path to python executable is set as discussed above, come to

DOS prompt and go to your folder/dir. See the figure below:

Python Programming Simplified

25

If you have followed instructions as shown in the figure above then viola!!. Congratulations on running

your first python script.

1.8 Python Character Set

A Python program is a collection of number of instructions written in a meaningful order. Further

instructions are made up of keywords, variables, functions, objects etc which uses the Python character

set defined by Python. It is a collection of various characters, digits and symbols which can be used in a

Python program. It comprises followings:

Python Programming Simplified

26

Table 1.1: Python Character Set

S.N Elements of Python character Set

1. Upper Case letters: A to Z

2. Lower Case letters: a to z

3. Digits: 0 to 9

4. Symbols (See below)

1.9 Python Tokens

Smallest individual unit in a Python program is called Python Token. Python defines six types of

tokens.

 1. Keywords

 2. Identifiers

 3. Literals

Symbol Name Symbol Name

 ~ tilde > greater than

 < less than & ampersand

 | or/pipe # hash

 >= greater than equal <= less than equal

 == equal = assignment

 != not equal ^ caret

 { left brace } right brace

 (left parenthesis) right parenthesis

 [left square bracket] right square bracket

 / forward slash \ backward slash

 : colon ; semicolon

+ plus - minus

* multiply / division

% mod , comma

'

single quote " double quote

 >> right shift << left shift

 . period _ underscore

Python Programming Simplified

27

 4. Strings

 5. Operators

 6. Special Symbols

1.9.1 Keywords

Keywords are those words whose meaning has already been known to the python interpreter. That is

meaning of each keyword is fixed. You can simply use the keyword for its intended meaning. You

cannot change the meaning of Keywords. Also you cannot use keywords as names for variables,

function, arrays etc. Keywords are required as they help us to create scripts, define structure and syntax

of the python scripts.

There are 33 keywords in Python 3.6. Following figure lists all keywords available in Python.

Table 1.2: Python Keywords

False None True and as assert

break class continue def del elif

else except finally for from global

if import in is lambda nonlocal

not or pass raise return try

while with yield

As clear from the above table except the first three keywords: False, True, None, all other keywords are

written in small case letters.

 1.9.2 Identifier

Identifiers are names given to various program elements like variables, array, functions, class etc. To

identify any programming element like variable, class, function, array, module etc. identifiers are

required.

Rules for writing identifiers

(a) First letter must be an alphabet or underscore _.

(b) From second character onwards any combination of digits, alphabets or underscore is allowed.

(c) Only digits, alphabets, underscore are allowed. No other symbol is allowed.

(d) Keywords cannot be used as identifiers.

(e) Identifier can be of any length.

Examples of valid and invalid identifiers (On the basis of above rules)

Python Programming Simplified

28

Valid identifier Order_no, name, _err, _123,xyz,radius, a23, int_rate

Invalid

Identifiers

a. order-no (hypen not allowed)

b. 12name (cannot start with digit)

c. e$rr (here $ is for space which is not allowed)

d. def (cannot use as it is a keyword)

e. x+123 (+ cannot be used)

f. 123 (just numbers not allowed)

1.9.3 Literals

Literals in Python refer to fixed values that do not change during the execution of a program. They are

also known as nameless constants. There are various types of literals in Python. They are classified into

the following categories as given below.

Figure 1.1: Various python literals

(a) Integer Literals

(b) Real Literals

(c) String Literals

(d) Complex Literals

(e) List Literals

Python Programming Simplified

29

(f) Dictionary Literals

(g) Set Literals

(h) Tuple Literals

(i) Boolean Literals

We discuss each literal one by one.

 Integer Literals

They are of three types

(a) Decimal Literals: They are sequence of digits from 0 to 9 without fractional part. It may be

negative, positive or zero.

Example: 12,455, -5644,0.

 (b) Octal Literals: They have sequence of numbers from 0 to 7 and first digit must be 0o. The

alphabet O may be upper case or lower case.

Example: 0O34,0O,0o564,0o123

(c) Hex Literals: They have sequence of digits from 0 to 9 and A to F(represents 10 to 15).They start

with 0x or 0X.

 Example: 0x34, 0xab3, 0X3E.

(d) Binary Literals: They have sequence of digits from 0 and 1. They start with 0b or 0B.

 Example: 0b01, 0B111, 0b10101.

The shell tour of all the above literals in shown in the following figure:

>>> x=10; print(x)

10

>>> x=0O45; print(x) # octal number, output in decimal

37

>>> x=0x34; print(x) # hex number, output in decimal

52

>>> x=0b1010; print(x)

10

>>> x=1_23_45_678; print(x) # long number separated by _

12345678

>>> x=0b1011_1110; print(x) # binary number

190

Python Programming Simplified

30

From the above small python shell session, you have understood the concepts of integer literals. You

also have noticed that all binary, octal and hex literals on printing gives output in decimal. This can be

changed with the use of built in functions: bin, oct and hex. See them in action in following session:

>>> x=0b11

>>> y=0b101

>>> x+y

8

>>> bin(x+y)

'0b1000'

>>> x=0o23

>>> y=0o12

>>> x+y

29

>>> oct(x+y)

'0o35'

>>> x=0x12

>>> y=0xa1

>>> x+y

179

>>> hex(x+y)

'0xb3'

Real Literals

They are the numbers with fractional part. They are also known as floating point literals.

Example: 34.56, 0.67, 1.23.

Real constants can also be represented in exponential or scientific notation which consists of two parts.

For example the number 212.345 can be represented as 2.12345e+2 where e+2 mean 10 to the power

2. Here the portion before the e that is 2.12345 is known as mantissa and +2 is the exponent. Exponent

is always an integer number which can be written either in lower or upper case.

>>> x=3.4e+2

>>> x

340.0

>>> x=3.4e-2

>>> x

0.034

Python Programming Simplified

31

String or String Literals

They are sequence of characters, digits or any symbol enclosed in double quotes or single quotes.

Example: "hello", ‘23 twenty three’, ‘&^ABC’, “2.456”

>>> x='python'

>>> print(x)

python

>>> x="python"

>>> print(x)

python

>>> x="'python'"

>>> print(x)

'python'

>>> x='"python"'

>>> print(x)

"python"

Single Character Literals

Python does not any have concept of character literals but a string with just one character enclosed in

either single or double quotes work as character literals. Python uses Unicode character set and

supports ASCII characters sets too.

>>> x="A"

>>> ord(x) # Ascii value of A

65

>>> x='a'

>>> ord(x)

97

>>> x=65

>>> chr(x)# character corresponding to Ascii value 65

'A'

>>> x=191

>>> chr(x)

'¿'

>>> x="AB"

>>> ord(x)

Traceback (most recent call last):

Python Programming Simplified

32

 File "<stdin>", line 1, in <module>

TypeError: ord() expected a character, but string of length 2 found

Boolean Literals

Boolean literals are simply True and False.

>>> True

True

>>> False

False

>>> x=True

>>> print(x)

True

>>> type(x)

<class 'bool'>

Backslash Literals

 Python defines several backslash character constants which are used for special purpose. They are

called so because each backslash constant starts with backslash (\). They are represented with 2

characters whose general form is \char but treated as a single character. They are also called escape

sequences. You will see their usage in number of programs later in this chapter and all other chapters

of the book. Given below is the list of backslash character literals: -

S.N BCC MEANING ASCII VALUE

1. \b backspace 08

2. \f formfeed 12

3. \n newline 10

4. \r carriage return 13

5. \" double quotes 34

6. \' single quotes 39

7. \a alert 07

8. \t horizontal tab 09

9. \v vertical tab 11

Python Programming Simplified

33

Table 1.3: Escape Sequences

>>> print("\a")

>>> print("hello\tpython")

hello python

>>> print("hello\npython")

hello

python

>>> print("hello\rpython")

python

>>> print("hello\r\npython")

hello

python

>>> print("hello\bs")

hells

>>> print("hello\b ")

hell

>>> print("\"hello\"")

"hello"

>>> print("\'hello\'")

'hello'

>>> print("a\\b")

a\b

10. \0 null 00

Python Programming Simplified

34

>>> print("It\'s fun")

It's fun

Complex Literals

Complex literals are having two parts: real and imaginary. The both the parts are written with a “+” as

separator. Any part can be integer or float type. Examples: 2+3j,1.2+5j, 3j,

Shell session is given below:

>>> x=2+3j

>>> print(x)

(2+3j)

>>> x=1.2+4.5j

>>> print(x)

(1.2+4.5j)

>>> print(x.real,x.imag)

(1.2,4.5)

>>> x=0.2j

>>> print(x)

0.2j

>>> type(x)

<class 'complex'>

List Literals

List literals are any combination of other literal types enclosed within square brackets. They will be

discussed in detail in coming chapters,

Examples: [1,2,3,4],[‘A’,22,True],[“hello”,23,34.45].

Shell session is given below:

>>> L=[1,2,3,4]

>>> print(L)

[1, 2, 3, 4]

>>> L=[True,"hello",34.45]

>>> print(L)

[True, 'hello', 34.45]

>>> L=[True,2+3j,[3,4],45.56]

>>> print(L)

Python Programming Simplified

35

[True, (2+3j), [3, 4], 45.56]

>>> type(L)

<class 'list'>

Dictionary Literals

Dictionary literals are created within curly braces and with key-value pairs. More on this in coming

chapters. Examples: {‘age’:23,’name’:’harsh’},{‘jan’:31,’march’:31} etc.

See shell session below:

>>> x={'age':12,'name':'harsh'}

>>> x

{'age': 12, 'name': 'harsh'}

>>> x.keys()

dict_keys(['age', 'name'])

>>> x.values()

dict_values([12, 'harsh'])

>>> x.items()

dict_items([('age', 12), ('name', 'harsh')])

Set Literals

Set literals are simply set with elements enclosed within braces. They can be created with set() or by

putting elements in curly braces. Set store only unique elements even if duplicates are

present.Examples: {2,3,4,5,2},{“A”,”BC”,”D”}, set([3,4,5,6,2]}.

See shell session in practice:

>>> {"juhi",'purvi','purvi','anil'}

{'purvi', 'juhi', 'anil'}

>>> set(["juhi",'purvi','purvi','anil'])

{'purvi', 'juhi', 'anil'}

>>> {4,5,6,3,2,3,4,5}

{2, 3, 4, 5, 6}

>>> set({4,5,6,3,2,3,4,5})

{2, 3, 4, 5, 6}

>>> set([4,5,6,3,2,3,4,5])

{2, 3, 4, 5, 6}

Tuple Literals

Python Programming Simplified

36

Tuple literals are simply elements enclosed within parentheses. Examples: (2,3,4,5,2),(“one”, “two”),

(3,)

See shell session in practice:

>>> x=(2,3,4,5)

>>> print(x)

(2, 3, 4, 5)

>>> x=(3,)

>>> type(x)

<class 'tuple'>

>>> x=('hello',34,56.78)

>>> print(x)

('hello', 34, 56.78)

List, sets, tuple, dictionary all belong to class of collections and the treatment of all will be done in

coming chapters.

1.9.4 Strings

See string literals.

1.9.5 Operators

 They are discussed in chapter 2.

1.9.6 Special symbols

They are also known as separator and they are square brackets [] , braces { } , parentheses () etc. They

[] used in array and known as subscript operator, the symbol () is known as function symbol.

1.10 Variables

A variable is a named location in memory that is used to hold a value that can be modified in the

program by the instruction. Python is a dynamic language so declaration of variables stating their types

and name is not required. You can declare and initialize the variable right at the time of use. The type

of variable is determined by the type of contents it is storing. Every variable has a class which can

easily be seen using the type function. The id function lets you see the address of the variable in

memory.

>>> x=10

>>> type(x)

<class 'int'>

Python Programming Simplified

37

>>> x=23.4

>>> type(x)

<class 'float'>

>>> x='python'

>>> type(x)

<class 'str'>

>>> x=True

>>> type(x)

<class 'bool'>

>>> x={3,4}

>>> type(x)

<class 'set'>

>>> x=[1,2,3]

>>> type(x)

<class 'list'>

>>> id(x)

1958436684552

>>> x=23

>>> id(x)

1781690528

As you can see from the above shell session variables are declared and initialized at the point of use and

type of variable changes dynamically as initialized contents changes say from integer to string, or string

to boolean. This can be easily understood using the type function. One more point regarding variables

is the use of id function which tells the memory address of the variable. Further note that as you assign

the same variable having different contents the id after new assignment also changes. This indicates

that old variable cease to exist and new variable with the same name with new content is created.

1.11 Data Types

Python defines several data types which can be used under

different programming situations like an int data type can be

used to represent whole numbers as age of a person, roll

number etc or float data type can be used to represent salary of

a person, interest rate etc. The main thing to note about data types in python that

they all are classes and variables/instances of those data types are objects.

The basic Python data types are as shown below:

1. Built-in Types

(a) Numbers

Python Programming Simplified

38

(b) List

(c) Tuple

(d) Strings

(e) Set

(f) Dictionary

2. User defined data types

(a) class

1.11.1 Numbers

Python number types are int, float and complex. As we have seen in the Literals Section above they all

are classes. Integers can be decimal, octal, hexadecimal and binary. Real values are just values with a

decimal point and complex numbers are in pair of real and imaginary with a + operator joining them

and suffix of “j” after imaginary part. An example through shell is illustrated:

>>> x=12

>>> type(x)

<class 'int'>

>>> y=3.45

>>> type(y)

<class 'float'>

>>>

x=3423499543853945839534534059340593458459384593845309583495345038459305

>>> print(x)

3423499543853945839534534059340593458459384593845309583495345038459305

>>> type(x)

<class 'int'>

>>> a=3+4.4j

>>> type(a)

<class 'complex'>

>>> print('type of',a,' is ',type(a))

Python Programming Simplified

39

type of (3+4.4j) is <class 'complex'>

There is also a function: isinstance that can be used to check if an instance is of specific class or any of

it subclass. The function is a part of default imported module that we will discuss later. The syntax of

this can easily be seen using the help function as:

>>> help(isinstance)

Help on built-in function isinstance in module builtins:

isinstance(obj, class_or_tuple, /)

Return whether an object is an instance of a class or of a subclass

thereof.A tuple, as in ``isinstance(x, (A, B, ...))``, may be given as

the target to check against. This is equivalent to ``isinstance(x, A)

or isinstance(x, B) or ...`` etc.

Lets see how do we use it using some examples:

>>> x=10

>>> isinstance(x,int) # check x is of type int

True

>>> x=10.45

>>> isinstance(x,float)

True

>>> isinstance(x,int)

False

>>> x=10+4j

>>> isinstance(x,int)

False

>>> isinstance(x,complex)

True

>>> isinstance([3,4],list)

True

>>> x=10

>>> isinstance(x,(int,complex))

True

>>> x=10+5j

>>> isinstance(x,(int,complex))

True

Python Programming Simplified

40

As can be seen in the last two examples, instead of one single class type a tuple of class types can also

be given. So if any of the class type matches then the result returned is True else False.

1.11.2 List

List is an ordered sequence of items of any type. Even another list can be a member of List. All list

elements are enclosed within square brackets. Detailed discussion is in Chapter X. See some examples:
>>> L=[1,2,3,5]

>>> print(L)

[1, 2, 3, 5]

>>> len(L)

4

>>> L=['hello','this','is','example']

>>> print(L)

['hello', 'this', 'is', 'example']

>>> L=['hello',34.56,True,[4,5]]

>>> print(L)

['hello', 34.56, True, [4, 5]]

>>> type(L)

<class 'list'>

1.11.3 Strings

Strings are just sequence of characters enclosed within double or single quotes. Individual character of

strings can be accessed using subscript operator []. The first character is at 0 index and last at -1.

Strings are immutable collections. See shell in action:

>>> s="hello";

>>> print(s)

hello

>>> s="hello"+" "+"python"

>>> print(s)

hello python

>>> "hi"*3

'hihihi'

>>> s[0]

'h'

>>> s[-1]

'n'

Python Programming Simplified

41

>>> s="'hello'"

>>> print(s)

'hello'

>>> type(s)

<class 'str'>

>>> s[0]='c'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

String can also span multiple lines in shell. For continuation on next line “\” can be used or multiline

string using triple double quotes or triple single quotes can be used. See shell in action:

>>> s='this \

... is \

... an example'

>>> print(s)

this is an example

>>> s

'this is an example'

>>> s='''hello

... this is

... an example

... '''

>>> s

'hello\nthis is\nan example\n'

>>> print(s)

hello

this is

an example

>>> s="""hello

... python"""

>>> s

'hello\npython'

>>> print(s)

hello

Python Programming Simplified

42

python

1.10.4 Set

Set is an unordered collection of various elements of any type. As we have in literal section, the

elements are separated by comma and for opening and closing the set ,braces are used. The special

point about set is that set stores only unique items. See shell in action.

>>> s={1,3,2,3,2,3}

>>> s

{1, 2, 3}

>>> print(s)

{1, 2, 3}

>>> type(s)

<class 'set'>

>>> s=set('aabrakadabra')

>>> print(s)

{'a', 'k', 'd', 'r', 'b'}

>>> s[0]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'set' object does not support indexing

1.10.5 Dictionary

Dictionary is an unordered collection where each item is a key: value pair. All the key value pair are

put into curly braces. Each key is separated by value using colon. See shell in action:

>>> d={1:"one",2:'two'}

>>> d

{1: 'one', 2: 'two'}

>>> d[1]

'one'

>>> d[2]

'two'

>>> d[3]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

Python Programming Simplified

43

KeyError: 3

>>> d[3]='three'

>>> d

{1: 'one', 2: 'two', 3: 'three'}

>>> d.keys()

dict_keys([1, 2, 3])

>>> d.values()

dict_values(['one', 'two', 'three'])

>>> d.items()

dict_items([(1, 'one'), (2, 'two'), (3, 'three')])

1.12 Indentation in Python

Python is not free form language like C/C++/Java. In a free form language there is no restriction on

writing code in any column or any line. Blocks can easily be created using opening braces ‘{‘ and

closed using closing braces ‘}’.

In Python indentation plays an important role. All the statements under one block must follow same

indentation. Even a single space not matching indentation can create problem. The standard says 4

space characters for indentation for creating any block :for ,if, else , any loop, function, class etc. A

block in python is created by colon(:). It will be clearer as you see some python code in coming

chapters. For now, see some examples:

Table 1.4 : Some Indentation Examples

Indentation Example Explanation

print(“First line”)

 print(“second line”)

Second print statement is not indented. Must

be aligned with first print statement. Gives

error.

if True:

 print(“its true”)

 print(“Indented”)

else:

 print(“False”)

if and else are indented, if block is created

because of : after True . The print statement

within if block is having 4 space indentation.

Tab can also be used for indentation. Similarly,

else block is created and having one print

statement indented by 4 space.

if a>b:

 if a>c:

 print(a,” is Max”)

 else:

 print (c,” is Max)

else:

An example of nested if-else. The print within

inner if of outer if is indented with respect to

inner if. If-else within outer if is indented with

respected to outer if.

Python Programming Simplified

44

 if b>c:

 print(b,” is Max”)

 else:

 print (c,” is Max)

i=1;

while i<=10:

 print(“i=“,i)

 i=i+1

print(“outside loop”)

First, second and last line are indented. The

while loop creates a block and all statements

within while loop is indented.

1.13 Python Comments

Comments are simple text which makes it easy to understand the source code. You as a coder in any

programming language wish to provide some code to be commented so that after some time (in a

month or two) it can give you idea about as what you did earlier. Further some portions of code can

also be commented as not to be interpreted by python. It is a good programming practice to always

document your code using comment.

In Python comments can easily be created by ‘#’ before the start of the line like:

Example of print function

print(“Hello Python”)

Multiline comments are not supported by python and you must use # in every line to make it a

comment like:

Example of print function

use for display purpose

print (“Hello Python”)

One way of achieving multiline comment is to use triple double quotes or triple single quotes. They

serve special purpose while creating functions and will be illustrated when we study functions. They

are used for creating multiline string as we have seen earlier in “Strings”.

“””

Function print

Is used for

Printing on the screen”””

1.14 Python Statements

Python is very rich in types of statements. Python contains many types of statements that can be used in a variety

of programming situations. All statements are part of the Python program which executes when the program

Python Programming Simplified

45

executes. You don’t make use of all the statements in every program, but you use them as par the demand of the

problem you are going to solve using Python.

A python statement is any instruction that can be executed by python interpreter. For example, the

print function is a statement. When executed by python interpreter it displays output onto the screen.

As another example: x=10 is an assignment statement, on execution is sets the value of x as 10.

The various types of statements supported by Python are discussed below:

1. Selection/Conditional/Decision Making Statement- By default the program flows sequentially. These

statements decide the flow of statements based on evaluation of results of conditions. Types of

statements in this category are: simple if, if-else , else if ladder.

2. Iteration/Looping Statement– Looping statements used to run a block of statements repeatedly for a

finite number of times. Thus, they form a loop. Examples of these types of statements are: for and while

statements. Python also has range function that gives range of values. It is like loop generating values

within range. Both first and second category comes under the name “control statements”.

3. Jump Statements – These statements are used to make the flow of your statements from one section of

program to other. Statements break, continue and return come under this category of statements.

4. Expression Statement - Any valid expression makes an expression statement consists of any operator,

variable, literals which we will discuss in the next chapter. Assignment statement discussed above in

some python code comes under Expression Statement.

5. Block Statement – Block is a group of statements which are bind together by using colon (:) as

discussed in indentation section.

6. Input Statements – All statements which are responsible for taking input from keyboard or file are

input statements. The input function discussed later is an example of input statement.

7. Output Statements- All statements which are responsible for displaying something onto screen or to the

file are output statements. The function print is an example of output statements.

8. Empty /null statement: An empty statement does nothing but sometimes require in programming

situations. One example is creating delay using loop or creating an empty class. The pass keyword act as

an empty statement in python.

1.14.1 Multiline Statements

Statement terminator in python is new line character. But when you want to continue your

statement over multiple line python provides a line continuation symbol ‘\’. It can be used as:

>>> x=10*3+5 \

... -3/4 \

... +5

>>> x

39.25

>>> x= (10*3+5

... -3/4

... +5)

Python Programming Simplified

46

>>> x

39.25

In the first example line continuation character was used but in the second example the whole

expression was split onto multiple lines but within parenthesis. This eliminated the need of line

continuation character. In Python, line continuation is implied inside parentheses (), brackets [] and

braces { }. But remember this does not work dealing with strings. See below:

>>> x=("this is

 File "<stdin>", line 1

 x=("this is

 ^

SyntaxError: EOL while scanning string literal

For multiline strings you can use triple double/single quotes as discussed earlier.

See one more example of multiline statements to wrap up this section:

>>> x=("string",

... "is",

... "fun"

...)

>>> x

('string', 'is', 'fun')

>>> x=['string','is','fun']

>>> x=['string',

... 'is','fun']

>>> x

['string', 'is', 'fun']

>>> x={'string',

... 'is','fun'

... }

>>> x

{'is', 'string', 'fun'}

1.15 The print function

In this section we are going to see number of examples of print functions. Some examples using scripts

and some within python shell. Let’s start with first example within shell.

Example 1 within shell

Python Programming Simplified

47

>>> print("one");print("two");print("three")

one

two

three

>>> print("one\ttwo\tthree")

one two three

>>> print("This is a long \

... example which is \

... spanning multiple \

... lines")

This is a long example which is spanning multiple lines

The code above shown in shell is easy to understand. Each print statement leaves a line by default after

printing. Multiple commands can be put on same line by separating them with semicolon. The tab

character has been used for printing contents on the same line. For printing long lines and respecting

the width of the screen “\” can be used as a continuation character.

To see the various parameters for the print function we can simply use help function as:

>>> help(print)

Help on built-in function print in module builtins:

print(...)

print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file:a file-like object(stream); defaults to the current sys.stdout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

Keyword or named arguments means we can supply the values to these arguments with their name. The

default value for file argument is sys.stdout ie. by default the output will appear on monitor or screen.

The sep argument is separator and default value is space and end argument’s default value is newline

character. Let’s understand them in shell:

>>> print("first");print("second")

first

second

>>> print("first",end="\t");print("second")

Python Programming Simplified

48

first second

>>> print(10,12,13)

10 12 13

>>> print(10,12,13,sep=";")

10;12;13

>>> print(10,12,13,sep="\n")

10

12

13

The concepts can easily be build upon just by seeing the output. Now lets understand the concept of file

argument. See the next shell session :

>>>print("This not gonna appear on screen",file=open("myfile.txt","a"))

>>> print("This also",file=open("myfile.txt","a"))

>>> print("But this is")

But this is

The file argument opens a file by the name “myfile.txt” in append mode in the current working

directory. Assuming we are in our directory “mypython”. This file will be saved in mypython

directory. Append mode means if file does not exist it will be created and matter will be appended at

the end.

As you can see from the shell that output of first two print statement does not appear on screen instead

it goes into file “myfile.txt”. In the last print statement as we have not used the file keyword argument

it appears on the screen.

See the output of the file “myfile.txt” in notepad:

Or you can just open the file and print its content (File handling will be covered in chapter XXX).

Python Programming Simplified

49

>>> for line in open("myfile.txt"):

... print(line)

...

This not gonna appear on screen

This also

Don’t forget to give 4 spaces after for loop in next line and press enter in last line.

For printing the values of variables of different types, the print function has different formats. Lets

explore them in shell:

>>> name='Pari';age=23;

>>> print("Hello ",name," You are ",age, "years old")

Hello Pari You are 23 years old

The first format for printing the variables is to simply concatenate them using comma and we have

done for name and age.

Lets see the second way of doing the same :

>>> print("Hello {0} you are {1} years old". format(name,age))

Hello Pari you are 23 years old

>>> print("Hello {} you are {} years old". format(name,age))

Hello Pari you are 23 years old

In the above we make use of format method of string class. The variables to be printed are arguments to

format and assigned positions starting from 0. Thus {0} in print function means displaying the value of

name and {1} means displaying the value of age. When positional number is not mentioned variables

are printed in order from left to right. See one more example:

>>> name='Pari';age=23

>>> print("Hello {} you are {} years old".format(name,age))

Hello Pari you are 23 years old

>>> print("Hello {} you are {} years old".format(age,name))

Hello 23 you are Pari years old

>>> print("Hello {1} you are {0} years old".format(age,name))

Hello Pari you are 23 years old

The other print option for variables is using format specifiers.

>>> print("Hello %s you are %d years old"%(name,age))

Hello Pari you are 23 years old

>>> print("Your salary is %f"%54000.0)

Your salary is 54000.000000

Python Programming Simplified

50

Here %d, %s and %f is known as format specifier and used for printing integer, string and float type

of values.

In next way you can use named or keyword arguments in print function as:

>>>print("Hello {name} you are {age} years old".format(name='Pari',age=21))

Hello Pari you are 21 years old

Finally you can use string concatenation using + symbol. But here non string variables require to be

converted into string using function ‘str’.

>>> print("Hello "+name+" you are "+str(age)+" years old")

Hello Pari you are 23 years old

1.16 Reading input from user

To read any type of input from user you can make use of input function. The function returns a string

read from standard input device i.e. keyboard. The input to the function is a string prompting user for

entering input. See the signature of the function using help.

>>> help(input)

Help on built-in function input in module builtins:

input(prompt=None, /)

 Read a string from standard input. The trailing newline is stripped.

 The prompt string, if given, is printed to standard output without a

 trailing newline before reading input.

 If the user hits EOF (*nix: Ctrl-D, Windows: Ctrl-Z+Return), raise

EOFError.

 On *nix systems, readline is used if available.

The method says that after giving input we press Enter for returning and that newline character does not

become part of the input. Even the prompt is None. It means we can leave the input function empty.

See some examples in shell.

>>> name=input('Enter your name:')

Enter your name:Kuntal

>>> print('Hello ',name)

Hello Kuntal

>>> name=input()

Jay

>>> print('Hello ',name)

Hello Jay

Python Programming Simplified

51

In the first example of input the prompt is assigned the string ‘Enter your name’. In the second no

string is passed and we just entered the text ‘Jay’..

One important point to note in input that it always return string ie.even in input your supply any

integer, float, Boolean value it will take that as string. To prove my point lets see shell in action.

>>> x=input("Enter integer")

Enter integer10

>>> x+10

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: must be str, not int

>>> x+str(10)

'1010'

>>> type(x)

<class 'str'>

As can be seen from the above shell session return type of input function is string. The first error is as

we are trying to add integer with string. As x is string we convert 10 to string using str function. But

output is again string ‘1010’ and finally the type of x returned is string.

1.17 Type Conversion

To convert the read item from input function to the type we want or in general for type conversion,

python provides number of conversion functions. Lets start with int function.

>>> x='10'

>>> y=int(x)

>>> y+10

20

>>> x=input('Enter x')

Enter x10

>>> x=int(x)

>>> x=x+20

>>> x

30

>>> z=x+y

>>> z

40

Python Programming Simplified

52

In the above shell session you can easily understand that how int function has been used for converting

a string to integer. See some more examples in next shell session:

>>> int(23.45)

23

>>> int(True)

1

>>> int(False)

0

>>> int(2+3j)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: can't convert complex to int

.

The int function can also be used for converting a number from any other base to decimal base 10. See

shell session:

>>> int('123',8) # convert octal ‘123’ to integer

83

>>> int('0b1010',2)

10

>>> int('0o123',8)

83

>>> int('1010',2)

10

>>> int('0x123',16)

291

>>> int('123',16)

291

The other function and their use are shown in the table given below:

Table 1.5: Examples of Type Conversions

>>> float('23.34')

23.34

Converts string to float, try other types

>>> str(23)

'23'

Converts integer to string, try other types as

arguments.

Python Programming Simplified

53

>>> complex(2)

(2+0j)

>>> complex(2,3)

(2+3j)

Creates complex number with one or two

arguments. Try with zero argument.

>>> list('python')

['p', 'y', 't', 'h', 'o', 'n']

Converts a string into list.

>>> tuple('python')

('p', 'y', 't', 'h', 'o', 'n')

Converts a string into tuple.

>>> set('python')

{'o', 'h', 't', 'n', 'y', 'p'}

Converts a string into unordered set with

duplicates removed.

>>> dict([[1,2],[3,4]])

{1: 2, 3: 4}

Creates a dictionary from a list of lists.

>>> dict([(3,26),(4,44)])

{3: 26, 4: 44}

Creates a dictionary from list of tuples.

1.18 Scripting Examples

Script 1.1 to read name from user and display

name=input('Enter your name\n')

print('Hello ',name)

OUTPUT:

Enter your name

Juhi

Hello Juhi

The script is self-explanatory.

Script 1.2 to read name, age and salary from user and display.

name=input('Enter your name\n')

age=int(input('Enter your age\n'))

salary=float(input('Enter your salary: '))

print('Hello ',name,' your age is ',age,' and salary is ',salary)

OUTPUT:

Enter your name

Navin

Python Programming Simplified

54

Enter your age

27

Enter your salary: 35000

Hello Navin your age is 27 and salary is 35000.0

Here we have taken three different input from user: name is of string type, age of integer type and

salary of float type. The same are displayed back. As we are not performing any operation on age and

salary variables its ok to not type convert them into integer and float respectively but it is advisable to

convert them into their respective types to avoid any unforeseen error or any ambiguous operation.

Script 1.3 Reading multiple variables with single input function

name,age=input('Enter your name and age\n').split()

print('Hello ',name)

print('After 10 years your age will be:',int(age)+10)

OUTPUT:

Enter your name and age

jatin 12

Hello jatin

After 10 years your age will be: 22

As we know input method returns a string, the string class has a method split which splits the input

string on space(default separator). The input must be supplied as separated by space or tab. The splitted

tokens are assigned to name and age.

Script 1.4 Number Conversion from decimal to other number system

num=int(input('Enter an integer:'))

print('Original number: ',num)

print('Octal equivalent: ',oct(num))

print('Hex equivalent: ',hex(num))

print('Binary equivalent: ',bin(num))

OUTPUT:

Enter an integer:125

Original number: 125

Octal equivalent: 0o175

Hex equivalent: 0x7d

Binary equivalent: 0b1111101

 The script is easy to understand. We take a decimal integer from user and convert the same into octal,

hex and binary using built in functions.

Python Programming Simplified

55

Script 1.5 To swap two integer numbers

a,b=input('Enter two numbers:').split()

a=int(a)

b=int(b)

print('Before Swapping')

print('a=',a,'\tb=',b)

a,b=b,a

print('After Swapping')

print('a=',a,'\tb=',b)

OUTPUT:

Enter two numbers:12 34

Before Swapping

a= 12 b= 34

After Swapping

a= 34 b= 12

 In other programming languages swapping operation is achieved as:

t=a;

a=b;

b=t;

where t is some temporary variable. But in python just one single line of code does this task: a,b=b,a

without needing any temporary variable.

1.19 Why Learn Python?

1. A language that can be easily and quickly learn. If you are a first-time programmer within no

time you’ll learn python.

2. Developing web applications is quite easy as compared to other web development framework

and languages.

3. The language allows you to code quickly, building complex applications with minimal lines of

code as compare to C/C++/Java etc. That boost developer productivity.

4. Programs can be easily ported across different platforms.

5. Its takes minimal time and amount of code to go from Idea to implementation.

6. Python is powering scientific, machine learning, data science applications.

7. Python is in demand because of artificial intelligence, data science, internet of things, machine

learning and deep learning.

Python Programming Simplified

56

8. Python code is easily readable even if its written by someone else. It’s as simple as plain

English.

9. Plenty of support libraries are available for numerical computing, game development, machine

learning, deep learning, robotics, cryptography, networking and many more.

10.Easy integration with other languages either through software or hardware.

11.An expertise in python can fetch you a lucrative job !

1.20 Companies Using Python

Sr.No Company Uses

1. Google Server side official language, web search systems, Machine

learning, deep learning

2. Facebook Services in infrastructure management, deep learning, machine

learning

3. YouTube Major portion written in Python

4. Instagram Django framework for web development

5. Raspberry Pi Uses python for programming

6. Industrial Light &

Magic

In the production of animated movies

7. Dropbox Client and server software written in python

8. Maya API are in python

9. NSA Cryptography and intelligence analysis

10. Netflix Software infrastructure

11. Microsoft Machine learning and deep learning

12. iRobot Development of robotic devices

13. Intel Hardware testing

14. Cisco Hardware testing

15. IBM Hardware testing, machine learning and deep learning

1.21 Points to Ponder

1. Python is a general purpose and widely used high-level programming language created by Guido

van Rossum in 1991

2. The name Python was adopted from a British comedy series "Monty Python's Flying Circus".

3. Python shell is an interactive command line interface for running python statements, commands,

functions etc.

4. The default python shell prompt is ‘>>>’ and known as primary shell prompt.

5. The secondary shell prompt is ‘…’.

6. The last executed command is stored in special variable known as _ .

7. Python is a scripting language and python files has extension ‘.py’.

8. Smallest individual unit in a Python program is called Python Token. They are keywords,

identifiers, operators, literals, strings, special symbols.

9. Python 3.6 has 33 keywords.

Python Programming Simplified

57

10. .Literals in Python refer to fixed values that do not change during the execution of a program.

They are also known as nameless constants.

11. Python is a dynamic language so declaration of variables stating their types and name is not

required.

12. Every variable has a class which can easily be seen using the type function and address which

can be seen using id function.

13. Python has built-in data types as: Numbers, List, Tuple, Strings, Set, Dictionary

14. Python is not freeform language. Indentation is required for the creation of blocks.

15. Python supports single line comment using # symbol and multiline comment using triple

double/single quotes.

16. A python statement is any instruction that can be executed by python interpreter.

17. For continuation of statements on multiple lines ‘\’ can be used. line continuation is implied

inside parentheses (), brackets [] and braces { }.

18. The syntax of the print function is :

print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

19.To read any type of input from user you can make use of input function. The function returns a

string read from standard input device i.e. keyboard

Python Programming Simplified

58

2. Operators & Expressions

2.1 Introduction

For performing different kind of operations, various types of operators are required. An operator

denotes an operation to be performed on some data that generates some value. For example, plus

operator (+) on 2 and 3 generates 5. Here 2 and 3 are called operands.

Python is very rich in built-in operators. The whole list of operators provided by Python is given in the

table below:

Table 2.1: Operators in Python

S.N Operator Symbol Representation

1. Arithmetic + , - , / , * , %

2. Logical and, or, not

3. Relational /Comparison >, < , >= , <= , == , !=

4. Assignment =

5. Bitwise & , | , ^ , ! , >> , <<

6. Membership in, not in

7. Identity is, not is

2.1.1 Binary Operators

All the operators which require two operands to operate on are known as binary operators. For example

as shown in the above table all the arithmetic, relational, logical (except not operator) assignment,

bitwise (except ~ operator) operators etc. are binary operators.

Examples: 2+4, 34>45, x=23, 2 and 5.

2.1.2 Unary Operators

Unary operators are those operators which require only one operand to operate on are known as unary

operators. For example as shown in the above table not logical operator, ~(1’s complement operator)

etc. are unary operators. Python also provides unary plus and unary minus i.e. +20 and -34. Here + and

– are known as unary plus and unary minus operators.

2.2 Expressions

Operator together with operands constitutes an expression or a valid combination of constants,

variables, and operators forms an expression. An expression is usually recognized by type of operator

Python Programming Simplified

59

used within the expression. Depending upon that you may have integer expression, floating point

expression, relational expression etc. You may also have different types of operators in an expression

which is a mixed mode expression. See the table given below for few examples.

Table 2.2: Types of Expressions

S.N

.

Expression Type of Expression

1. 2+3*4/ 6-7 Integer Arithmetic

2. 2.3 * 4.5 /7.0 Real Arithmetic

3. a>b!=c Relational

4. x and 10 or y Logical

5. 2>3+x and y Mixed (relational, arithmetic and logical)

2.3 Arithmetic Operators

As given in the Table 2.3 there are mainly 7 arithmetic operators in Python. They are +, -, *, /, // , %

and ** which are used for addition, subtraction, multiplication, float division , integer division,

remainder and power respectively. See the table given below:

Table 2.3 Arithmetic Operators

S.N Operator Example Meaning

1. + x+y or +x Perform simple addition; perform unary plus also.

2. - x-y or -x Perform simple addition; perform unary plus also

3. / x/y Divide x by y and return float value

4. // x // y Divide x by y and return integer value

5. * x * y Perform simple multiplication

6. % x % y Returns the remainder when x is divided by y. Works

for both integer and float.

7. ** x**y Finds x to the power y. Multiplies x by itself y times.

Let’s try all the above operators in python shell

>> x,y=23,5

>>> x+y

28

>>> x-y

Python Programming Simplified

60

18

>>> x*y

115

>>> x/y

4.6

>>> x//y

4

>>> x%y

3

>>> 2**y

32

>>>3.4%2

1.4

In the first line x and y are initialized to 23 and 5 respectively. This type of assignment is unique to

python. We will explore this later in this chapter. The simple / symbol is float division and // is for

integer division. The remainder operator works both with integer and floating-point numbers. Power

operator ** takes two operands: base and exponent and returns base to the exponent: 2**3 gives 8.

Let’s have one more session to understand /, // and % operators in detail but this time we also provide

explanation along with expression in tabular form.

>>> -10//3

-4

>>> 10//-3

-4

-10/3 gives -3.3333333333333335 and

-10//3 is floor of -10/3 i.e smallest integer

value of the result -10/3. As -4 is next

smallest integer after -3 so is the answer.

>>> 3//10

0

>>> -3//10

-1

>>> 3//-10

-1

-3/10 gives -0.3 and -3//10 is floor of -

3/10 i.e smallest integer value of the result

-3/10. As -1 is next smallest integer after -

0.3 so is the answer.

>>> 10%3

1

>>> -10%3

Remainder Formula

A%B=A-(A//B)*B

-10%3= -10-(-10//3)*3

Python Programming Simplified

61

2

>>> 10%-3

-2

 = -10 –(-4)*3

 = -10 +12

 = 2

10%-3= 10-(10//-3)*-3

 = 10 –(-4)*-3

 = 10 -12

 = -2

In the last example to remember what the output should be, perform normal remainder operation

without -ve sign. Make the sign of the dividend as sign of the remainder and add remainder to the

divisor.

For example, to tell quickly what the answer should be of 23%-5, just performing normal remainder

operation (without sign) and remainder is 3. As 23 is +ve, remainder 3 remains 3. Now to get actual

answer just add -5 to 3 and -2 is your answer. Similarly -23%5 remainder will be 3 and as sign of 23 is

-ve , remainder 3 changes to -3 and adding this to 5 gives answer as 2.

Another example with some easy method: 16%-7 , just add some multiple of -7 which is more than 16

(in magnitude) which is 21 so adding -7*3=-21 to 16 gives us -5. Similarly, for -16%7 add 21 to -16

that gives us answer as 5.

2.3.1 The string operators (+ and *)

The arithmetic operator + and * has special use with strings. The + operator is used for string

concatenation and * for creating copies of the strings. To use * operator with string just multiply string

with an integer number. See small shell session:

>>> s1='hello'

>>> s2='world'

>>> s3=s1+' '+s2

>>> s3

'hello world'

>>> s3='hello'+' '+'world'

>>> s3

'hello world'

>>> 'cool'*3

'coolcoolcool'

>>> print('cool\n'*3)

cool

cool

cool

Python Programming Simplified

62

>>> print('*'*20);print('I LOVE PYTHON');print('*'*20)

I LOVE PYTHON

>>> x='@'

>>> x*10

'@@@@@@@@@@'

The above examples are quite easy to understand.

2.3.2 Scripting Examples

Let’s write some python scripts which illustrate use of these operators.

Script 2.1 Arithmetic operations on two numbers

n1=float(input('Enter first float number\n'))

n2=float(input('Enter second float number\n'))

sum=n1+n2

sub=n1-n2

mul=n1*n2

fdiv=n1/n2

idiv=n1//n2

print('sum=',sum)

print('sub=',sub)

print('mul=',mul)

print('integer div=',idiv)

print('float division=',fdiv)

OUTPUT:

Enter first float number

34

Enter second float number

5

sum= 39.0

sub= 29.0

mul= 170.0

integer div= 6.0

Python Programming Simplified

63

float division= 6.8

The program is easy to understand as all concepts have been cleared in the preceding section.

Remember that division by zero is not allowed, if you do so run time error occurs:

>>> 3/0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

Instead of using separate variables for storing results of various operations, we can directly print them

in print function as:

print('sum=',n1+n2)

print('sub=',n1-n2)

print('mul=',n1*n2)

print('integer div=',n1//n2)

print('float division=',n1/n2)

Script 2.2: Finding quotient and remainder, given two

number as input.

n1=float(input('Enter first float number\n'))

n2=float(input('Enter second float number\n'))

q=n1//n2

r=n1%n2

print('N1=',n1,'\tN2=',n2)

print("Quotient=",q,'\tRemainder=',r)

OUTPUT:

Enter first float number

23

Enter second float number

4

N1= 23.0 N2= 4.0

Quotient= 5.0 Remainder= 3.0

Two numbers have taken from user and script simply finds quotient and remainder when n1 is divided

by n2.

Script 2.3 to find area of a circle

r=float(input("Enter the radius\n"))

Python Programming Simplified

64

area=3.14*r**2

print('Radius=',r)

print('Area of Circle %10.6f'%area)

OUTPUT:

Enter the radius

2

Radius= 2.0

Area of Circle 12.560000

The script ask use to enter the radius. The area of circle is PI*r*r where value of PI=3.14. To display

the answer in a width of 10 with 6 point after decimal, one width for decimal point and 3 before

decimal point we have used format %10.6f, f for floating point numbers.

Script 2.4 to find simple interest

p=float(input("Enter the principal \n"))

r=float(input("Enter the rate \n"))

t=float(input("Enter the years \n"))

si=p*r*t/100

print('Principal=',p)

print('Interest=',r)

print('Time=',t)

print('Simple Interest=',si)

OUTPUT:

Enter the principal

2000

Enter the rate

5

Enter the years

2

Principal= 2000.0

Interest= 5.0

Time= 2.0

Simple Interest= 200.0

The script has calculated the simple interest for given principal, rate of interest and time in years.

Script 2.5 to find area of a triangle

base=float(input("Enter the base\n"))

height=float(input("Enter the height\n"))

Python Programming Simplified

65

area=0.5*base*height

print('base=',base)

print('height=',height)

print('Area of triangle is %6.2f'%area)

OUTPUT:

Enter the base

15

Enter the height

8

base= 15.0

height= 8.0

Area of triangle is 60.00

Area of a triangle is ½ * base * height. We have taken base and height from user and stored in variables

base and height. Area is calculated using the formula and stored in area. The same is displayed using

print statement.

2.4 Relational Operator

Table 2.4 Relational Operators

S.N Operator Example Meaning / used for

1. > x > y Returns True when value of x is greater than value of

y else return False.

2. < x < y Returns True when value of x is less than value of y

else return False

3. >= x >= y Returns True when value of x is greater than equal to

value of y else return False

4. <= x <= y Returns True when value of x is less than equal to

value of y else return False

5. == x == y Returns True when value of x is equal to value of y

else return False

6. != x != y Returns True when value of x is not equal to the value

of y else return False

All relational operators yield boolean values i.e. True or False. A true value is represented by True and

has numerical value 1. A false is represented by False and has numerical value 0. In expression any

non-zero value is termed as true value. See short shell session

>>> 2>3

Python Programming Simplified

66

False

>>> 10>5

True

>>> 3!=4

True

>>> 4>=5

False

>>> 5<=6

True

>>> 4==4

True

>>> True+True

2

>>> False+True

1

>>> x=True+False

>>> x

1

As you can see from the above shell session that output of all relational operators is either True or

False. Further True and False can be used is any expression and their numerical value is used in the

expression.

Let’s see one simple example script that make use of all operators. We will see other examples in the

coming chapters when we introduce several new concepts of python.

Script 2.6 To demonstrate relational operators

a,b=6,14

print(a,'>',b,'is',a>b)

print(a,'>=',b,'is',a>=b)

print(a,'<',b,'is',a<b)

print(a,'<=',b,'is',a<=b)

print(a,'==',b,'is',a==b)

print(a,'!=',b,'is',a!=b)

OUTPUT:

6 > 14 is False

6 >= 14 is False

6 < 14 is True

Python Programming Simplified

67

6 <= 14 is True

6 == 14 is False

6 != 14 is True

2.5 Logical Operators

Logical operators are used to check logical relation between two expressions. Depending upon the truth

or falsehood of the expression they are assigned value True and False. The expressions may be

variables, constants, functions etc. See the table given below:

Table 2.5: Logical Operators

S.N Symbol Example Meaning

1. and x and y Returns true when both operands are

true else return False

2. Or x or y Returns true when either or both

operands are true else return False

3. Not not x Returns complement of the operand

(true to false or false to true)

The and and or are binary operators. For and to return true value both of its operand must yield true

value. For or to yield true value at least one of the operands yield true value. The not operator is a

unary operator. It negates its operand i.e. if operand is true it converts it into false and vice versa.

2.5.1 Logical and

The operator works with two operands which may be any expression, variable, constant or function. It

checks both of its operand returns true value or not. If they it returns True value. If either of its operand

is false, a False value is returned.

Table 2.5 Truth Table of Logical and

Operand 1 Operand 2 Returned Value

 False False False

 False True False

 True False False

 True True True

Script Explanation

a=10;b=20; As discussed above the and is called

AND operator. On both side of this

Python Programming Simplified

68

res=(a>=10 and b==20)

print("returned value in res=",res)

OUTPUT:

returned value in res=True

operator condition is specified. If both

conditions are true the returned value is

True else False value is returned. In the

above program both the conditions in the

expression are true so res contains True

as result

a=0;b=2;

res=(a!=0 and b<=2)

print("returned value in res=",res)

OUTPUT:

returned value in res=False

Simply changed the values of a and

b and first operand is false so False is

returned.

2.5.2 Logical or

The operator works with two operands which may be any expression, variable, constant or function. It

checks any of its operand returns true value or not. If any operator is True it returns True value (i.e. a

decimal 1). If both of its operand is false, a False value is returned (i.e. a decimal 0).

 Table 2.6 Truth Table Of OR

Operand 1 Operand 2 Returned Value

 False False False

 False True True

 True False True

 True True True

Script Explanation

a=100;b=120;

res=(a>=100 or b<0)

print("returned value in res=",res)

OUTPUT:

returned value in res=True

As discussed above the or is called

OR operator. On both side of this

operator condition is specified. If either

of the condition is true the returned

value is True. False value is returned

when both operands are false. In the

script first condition is true but second is

false so res contains True as result

a=0;b=2;

res=(a!=0 or b<=2)

print("returned value in res=",res)

OUTPUT:

Simply changed the values of a and

b and first operand is false but second is

true so True is returned.

Python Programming Simplified

69

returned value in res=True

2.5.3 Logical NOT (!)

The operator converts a true value into false and vice versa. Again, the operand may be any expression,

constant, variable or function.

Table 2.7 Truth Table of NOT

Operand Returned Value

False True

True False

See a small shell session to understand not operator

>>> x=12

>>> not x

False

>>> y=not x==12

>>> y

False

>>> a=not(x>10 and y==0)

>>> a

False

2.5.4 Short circuit operators

Before we delve into the discussion of what short circuiting is all about let’s understand one simple

concept. Writing logical expression with any operand without relational operator defaults to! =

operator. It means that writing: x and y>20 interprets to x! =0 and y>20. As another example writing x

and y means x! =0 and y! =0. In those expressions instead of True or False the numerical values are

returned.

In case of logical operator and and or , if the left operand yields false value, the right operand is not

evaluated by a compiler in a logical expression using and. If the left operand yields true value, the right

operand is not evaluated by the compiler in a logical expression with the operator or. The operators

and and or have left to right associativity, hence the left operand is evaluated first and based on the

output, the right operand may or may not be evaluated. As an example, consider the following

expression:

 (10>=15) and (5!=4)

The left operand of and i.e (10>=15) is false so right operand i.e (5!=4) is not evaluated.

If it were or in the above expression in place of and , second operand would have been checked.

Python Programming Simplified

70

Let’s see some examples:

Sr.No. Shell Expression Explanation

1. >>> x, y=10,20

>>> x and y

20

As x!=0 second operand is

checked and as y!=0 value

of y is returned

2. >>> x, y=10,0

>>> x and y

0

As x!=0 second operand is

checked and as y!=0 value

of y is returned

3. >>> x, y=0,20

>>> x and y

0

As x!=0 is false second

operand is not checked

because of short circuiting

value of x is returned

4. >>> x,y=10,20

>>> x or y

10

As x!=0 is true and logical

operator is or so second

condition is not evaluated

and answer is 10, value of

x.

5. >>> x,y=0,20

>>> x or y

20

As x!=0 is false second

operand is evaluated and 20

is returned.

6. >>> 2==(2 and 3)

False

2 and 3 returns 3 and 2==3

is False

7. >>> 2==(2 or 3)

True

2 or 3 returns 2 and 2==2 is

True

8. >>> 'x'==('x' and 'y')

False

‘x’ and ‘y’ returns ‘y’

which is not equal to ‘x’ so

False is returned

9. >>> 'x'==('x' or 'y')

False

‘x’ or ‘y’ returns ‘x’ which

is equal to ‘x’ so True is

returned

2.5 Assignment Operator

The = operator is called assignment operator. We have seen several instances of this operator in many

of the earlier programs. The new thing about assignment in python is that it supports parallel

assignment. See number of examples as illustrated through python shell:

Python Programming Simplified

71

Shell Expressions Explanation

>>> a,b=10,20 Assigning 10 to a and 20 to b

>>> a,b=(10,20) Another way of previous one

>>> a,b,c="CAT" “CAT” is unpacked , a=’C’, b=’A’,c=’T’

>>>a,b,c,d=”CAT” Error not enough values to unpack

>>>a,b=’CAT’ Error not enough values to unpack

>>>x,y,z=10,20,30

>>>x,y,z=z,z+y,y+x

Second line is equal to three parallel assignment: x=z;

y=z+y;z=y+x ; and x,y,z stores values 30,50,30.

Remember new assignments are not immediately

visible unless all assignments are executed.

>>>x,y,z=[1,2,3] List elements are unpacked and assigned to x, y and z

respectively

>>>str=”python”

>>>a,b,c=str[0],str[1],str[2:]

a=’p’,b=’y’ and c=’thon’

One more use of this operator is the shortening of following types of expressions:

 x=x+1, y=y*(x-4), a=a/10 , t=t%10

In all the above expressions the variable on both side of = operator is same, so we can change the above

expression in shorter form as follows:

 x=x+1 => x+=1

 y=y*(x-4) => y*=x-4

 a=a/10 => a/=10

 t=t%10 => t%=10

p=p-3 => p-=3

This form op= where operator may be any operator is called compound operator or shorthand

assignment operator.

2.6 Bitwise operators

They are called so because they operate on bits. They can be used for the manipulation of bits. All these

Python Programming Simplified

72

operators are extensively used when interfacing with the hardware and for settings of bits in registers of

the device. Python provides total 6 types of bitwise operators. They are as follows:

 Table 2.8 Bitwise Operators

For all the following scripts/shell session we consider only first 8 bits of the number for explanation

purpose. So, range of possible numbers is -127 to 128 As an example decimal 10 can be written in 8

bits as 00001010.

2.6.1 Bitwise AND (&)

It takes two bits as operand and returns the value 1 if both are 1. If either of them is 0, the result is 0.

 Table 2.9 Truth Table Of Bitwise AND

Let’s take a simple example. Binary values of a=2 is 0010 and b=3 is 0011.

Bitwise AND of these two values is performed as follows:

0 0 1 0

0 0 1 1

0 0 1 0 (output will be 2 in decimal)

S.N Operator Example Meaning / used for

1. & x & y Perform and operation on bits of x

and y

2. | x | y Perform or operation on bits of x and

y

3. ^ x ^ y Perform xor operation on bits of x

and y

4. ~ ~x Perform negation on bits on x

5. >> x>>n Shift bits of x by n positions towards

right

6. << x<<n Shift bits of x by n positions towards

left

First Bit Second Bit Result

0 0 0

0 1 0

1 0 0

1 1 1

Python Programming Simplified

73

if both bit are 1 output bit will be 1 using & operator else 0.

See execution in python shell.

>>> a,b=2,3

>>> a&b

2

>>> bin(a)

'0b10'

>>> bin(b)

'0b11'

>>> bin(a&b)

'0b10'

2.6.1.1 Masking using Bitwise AND

The AND operator is used for masking purpose. For example we have a binary number 10101101

which is 173 in decimal integer. We want to preserve the right most 4 bits (shown in italics) and make

the remaining bits to zero. For this purpose we choose a binary number 00001111. We choose one’s

(1) for those bits which we want to preserve and zero for which we do not want to preserve. Then

we perform Bitwise AND operation of these two binary numbers. That is

1 0 1 0 1 1 0 1 (Original Number)

0 0 0 0 1 1 1 1 (Mask)

0 0 0 0 1 1 0 1

This is known as masking. The number together with we perform Bitwise AND is known as Mask. As

another example say you want to preserve bit number 0,1,4,6 (0th bit is rightmost). So mask will be

01010101.

1 0 1 0 1 1 0 1 (Original Number)

0 1 0 1 0 1 0 1 (Mask)

0 0 0 0 0 1 0 1

See the shell execution given below:

>>> a=173

>>> b=15

Python Programming Simplified

74

>>> c=a&b

>>> c

13

>>> bin(a)

'0b10101101'

>>> bin(b)

'0b1111'

>>> bin(c)

'0b1101'

Use of format function

You might have noticed that output of bin function is limited in number of bits. It displays number in

binary depending upon actual number of bits needed. For example, if we want in the previous masking

example, to display 15 as: ‘0b00001111’ is not possible. The bin function does not display preceding

zeros. To get the binary pattern in the desired format we can make use of format function. See one

example as:

 >>> a=15

>>> format(15,'#010b')

'0b00001111'

>>> format(15,'#08b')

'0b001111'

In the format function first argument is the number whose binary we want. Second argument is

interpreted as: The # makes the format include the 0b prefix, and the 010 size formats the output to fit in 10

characters width, with 0 padding; 2 characters for the 0b prefix, the other 8 for the binary digits. We have

presented two examples. See in the second example the preceding 0s are just two.

You can try the format function for displaying the binary number in any desired pattern you want.

2. 6.2 Bitwise OR (|)

It takes two bits as operand and returns the value 1 if at least one bit is 1. If both are 0 only then result

is 0 else it is 1.

 Table 2.10 Truth Table Of Bitwise OR

First Bit Second Bit Result

0 0 0

0 1 1

1 0 1

1 1 1

Python Programming Simplified

75

Let’s take a simple example Binary values of a=12 is 1100 and b=7 is 0111.

OR of these two values is performed as follows:

1 1 0 0

0 1 1 1

1 1 1 1 (output in c will be 15 in decimal) .

If any of the bit is 1 output will be 1 using OR operator.

 Take a simple example in shell :

>>> a,b=12,7

>>> c=a|b

>>> format(a,'#010b')

'0b00001100'

>>> format(b,'#010b')

'0b00000111'

>>> format(c,'#010b')

'0b00001111'

2.6.3. Bitwise XOR (^)

This operator takes at least two bits (may be more than two). If number of 1’s are odd then result is 1

else result is 0.

 Table 2.12 Truth Table Of Bitwise XOR

First Bit Second Bit Result

0 0 0

0 1 1

1 0 1

1 1 0

Python Programming Simplified

76

Let’s take a simple example. Binary values of a=5 is 0101 and b=6 is 0110.

XOR of these two values is performed as follows:

0 1 0 1

0 1 1 0

0 0 1 1 (output will be 3 in decimal)

If odd number of 1’s are there output will be one otherwise output will be 0 using XOR operator

See the execution in shell script.

>>> a,b=5,6

>>> c=a^b

>>> format(a,'#06b')

'0b0101'

>>> format(b,'#06b')

'0b0110'

>>> format(c,'#06b')

'0b0011'

Though python provides swapping of two numbers without using third number as: a,b,=b,a; but the

bitwise operator ^ can also be used for achieving the same. See a python script:

Script 2.7 to swap two numbers using XOR (^) operator

a=int(input("Enter first number"))

b=int(input("Enter second number"))

print('Before swapping\n')

print('a=',a,'\tb=b',b)

logic Starts

a=a^b

b=a^b

a=a^b

logic ends

print('After swapping\n')

print('a=',a,'\tb=',b)

Python Programming Simplified

77

OUTPUT:

Enter first number10

Enter second number20

Before swapping

a= 10 b=b 20

After swapping

a= 20 b= 10

The code is quite easy to understand. The reader is encouraged to try the 3 line logic code for swapping

using dry run.

2.6.4. 1’s Complement (~)

The symbol (~) denotes one’s complement. It is a unary operator and complements the bits in its

operand i.e. 1 is converted to 0 and 0 is converted to 1.

Let’s see an example in shell and understand:

>>> b=12

>>> c=~b

>>> format(b,'#010b')

'0b00001100'

>>> format(c,'#010b')

'-0b0001101'

>>> c

-13

Binary value of b=12 is 00001100 in 8 bit representation.

In one’s complement we invert the bit values i.e 0 is inverted into 1 and vice-versa. So the binary

output will be:

c=11110011

But internally the computer represents the negative number in 2’s complement so this number in c we

convert to 2’s complement form. For this we leave the first 1 from right side and complement all other

bits:

00001101

This value is 13 and because of leftmost bit was 1 before performing 2’s complement, the number

is -13 which is what ~ operators returns.

Lets take one more example to understand:

binary value of 6 → 00000110

Python Programming Simplified

78

1’s complement of 6 →11111001 (sign bit is left most ,0:+ve,1:-ve)

2’s complement of 6 → 00000111

As the sign bit was 1 in 1’s complement, the answer will be negative i.e -7.

2.6.5. Left Shift Operator (<<)

The operator is used to shift the bits of its operand. It is written as x<<num; which means shifting the

bits of x towards left by num number of times. A new zero is entered in the Least Significant Bit (LSB)

position. See execution in shell followed by explanation.

>>> a=2

>>> b=a<<1

>>> b

4

>>> format(a,'#06b')

'0b0010'

>>> format(b,'#06b')

'0b0100'

a<<1 means shifting the contents of a towards left by 1 position. If we represent the number 2 in binary

as:

b3 b2 b1 b0

0 0 1 0

where b0 is the first bit from right which is called Least Significant Bit(LSB) and b3 is called Most

significant Bit(MSB).Shifting left by 1 bit position results in b3 losing its value and taking from b2,b2

getting from b1 and b1 from b0, a new zero is inserted at b0.So the resultant bit pattern will be:

b3 b2 b1 b0

0 1 0 0

Which is 4 in decimal .

Now instead of writing a<<1 if we write a<<2 it means shifting the contents of a twice towards left.

Original value in a=0010

b3 b2 b1 b0

0 0 1 0

Python Programming Simplified

79

Shifting once

b3 b2 b1 b0

0 1 0 0

(4 in decimal)

Shifting the value obtained in first step

b3 b2 b1 b0

1 0 0 0

Which is 8 in decimal and this is the final output

We have given just two examples of +ve numbers. The operators << equally work well with negative

numbers also.

>>> a=-10

>>> b=a<<2

>>> b

-40

>>> format(a,'#010b')

'-0b0001010'

>>> format(b,'#010b')

'-0b0101000'

NOTE: shifting the contents of a value val by num times means multiplying the value val by 2num

times. For example, 3<<5 means 3 * 25 and answer will be 3*32=96.

2.6.6. Right Shift Operator (>>)

The operator is used to shift the bits of its operand. It is written as x>>num; which means shifting the

bits of x towards right by num number of times. A new binary bit zero/one is entered in the Most

Significant Bit (MSB) position dependent upon sign of the number. If the number is +ve a binary zero

bit is entered else binary one bit is entered.

>>> a=8

>>> b=a>>1

>>> b

4

>>> format(a,'#08b')

Python Programming Simplified

80

'0b001000'

>>> format(b,'#08b')

'0b000100'

a>>1 means shifting the contents of a towards right by 1 bit position. If we represent the number 8 in

binary as:

b3 b2 b1 b0

1 0 0 0

Shifting right by 1 bit position results in b0 losing its value and taking from b1, b1 getting from b2 and

b2 from b1, a new zero is inserted in b3 as number 8 is +ve. So the resultant bit pattern will be:

b3 b2 b1 b0

0 1 0 0

In another example we shift the contents of a towards right by 2 bit positions. a>>2 means shifting

the contents of a twice towards right.

Original value in a=1000

b3 b2 b1 b0

1 0 0 0

Shifting once

b3 b2 b1 b0

0 1 0 0

(4 in decimal)

Shifting the value obtained in first step

b3 b2 b1 b0

0 0 1 0

Which is 2 in decimal and is the final output.

>>> a=8

>>> b=a>>2

>>> b

2

>>> format(a,'#08b')

Python Programming Simplified

81

'0b001000'

>>> format(b,'#010b')

'0b00000010'

Let’s see now one example of negative number.

>>> a=-10

>>> b=a>>1

>>> b

-5

>>> format(a,'#010b')

'-0b0001010'

>>> format(b,'#010b')

'-0b0000101'

For negative numbers the sign bit is 1 and a 1 is inserted from right during shifting. Now before

wrapping up this section let’s see what result we get for on odd number:

>>> a=9

>>> b=a>>1

>>> b

4

>>> format(a,'#08b')

'0b001001'

>>> format(b,'#010b')

'0b00000100'

>>> a=-9

>>> b=a>>1

>>> b

-5

>>> format(a,'#08b')

'-0b01001'

>>> format(b,'#08b')

'-0b00101'

For odd numbers floor of the output is taken i.e. smallest integer less than the result of a/2. For 4.5 it

becomes 4 and for -4.5 it becomes -5.

2.7 Membership Operator

Python Programming Simplified

82

Python supports two membership operators: in and not in. They can be used to check whether an

element is a member of any of the collection/sequence: list, string, dictionary, set etc.

Table 2.12 : Membership Operators

Operator Syntax Remarks Example

in element in

sequence

Return True/False if element

is in/not in sequence

‘a’ in ‘hola’ returns True

not in element not in

sequence

Return True/False if element

is not in/in sequence

‘a’ not in ‘hello’ returns

True

Let’s see some examples in python shell:

>>> 'v' in 'victory'

True

>>> x="Hello"

>>> 'H' in x

True

>>> 'h' in x

False

>>> L= [1,2,3,4]

>>> x in L

False

>>> 2 in L

True

>>> d={1:'Pari',2:'chinu'}

>>> 1 in d

True

>>> 'Pari' in d

False

>>> 3 not in d

True

>>> x=set('python')

>>> x

{'o', 'h', 'y', 'n', 't', 'p'}

>>> 'c' in x

False

Python Programming Simplified

83

>>> 'c' not in x

True

Most of the examples in shell above are easy to understand. Just one explanation: for dictionary items

membership operators in and not in compares with keys and not with values. In the example above as 1

is a key in dictionary d the operator in returns True but ‘Pari’ is a value so despite its presence in

dictionary d the membership operator in returns False.

2.8 Identity Operator

The identity operator is and not is are used to check similarity of the two operands. By similarity means

pointing to the same objects in the memory. This contrasts with == comparison operators which checks

for values of its operands instead of memory locations.

Table 2.13 : Identity Operators

Operator Syntax Remarks Example

is opr1 is opr2 Return True/False if opr1 is

same as opr2 (same object)

x=10;y=10;

x is y returns True

is not opr1 is not

opr2

Return True/False if opr1 is

not same as opr2 (same

object)

x=10;y=12;

x is not y returns True

Let’s see some examples:

>>> x=10

>>> id(x)

1360162560

>>> id(10)

1360162560

>>> x is 10

True

In the above the location of x and 10 is same as clearly seen by the address returned by id function.

That’s why the expression: x is 10 returns True. The same is true for strings also i.e.

>>> x='hell';y='hell'

>>> x is y

True

Try with y=10 along with the above and find out their ids.

>>> y=2.5

>>> y is 2.5

False

>>> y==2.5

Python Programming Simplified

84

True

>>> id(2.5)

2842696487608

>>> id(y)

2842696487560

The previous discussion does not apply to floating point numbers

>>> L=[1,2,3]

>>> [1,2,3] is L

False

>>> L1=[1,2,3]

>>> L is L1

False

>>> L2=L1

>>> L1 is L2

True

>>> y is not 2.5

True

In list also id of [1,2,3] is different though content of L is same. Even though content of L and L1 are

same they do not point to same memory location.

Let’s see some more examples to conclude this section.

>>> x=10

>>> x is int

False

>>> type(x) is int

True

>>> x=23.45

>>> type(x) is float

True

>>> L=[1,2,3]

>>> type(L) is list

True

>>> d={1:'aa'}

>>> type(d)

<class 'dict'>

>>> type(d) is dict

Python Programming Simplified

85

True

Important point to understand from above shell session is the use of type function to check type of any

given variable. It is sometime useful to find out the type of the variable dynamically as python is

dynamic type language. The use of is operator can be quite handy in those situations.

2.9 Precedence of Operators

Table 2.13: Precedence of Operators

Operator Description

() Parentheses (grouping)

f(args...) Function call

x[index:index] Slicing

x[index] Subscription

x.attribute Attribute reference

** Exponentiation

~x Bitwise not

+x, -x Positive, negative

*, /, % Multiplication, division,

remainder

+, - Addition, subtraction

<<, >> Bitwise shifts

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

in, not in, is, is not, <,

<=, >, >=,

<>, !=, ==

Comparisons, membership,

identity

not x Boolean NOT

and Boolean AND

or Boolean OR

lambda Lambda expression

Python Programming Simplified

86

Precedence tells in an expression which operation should be performed first depending upon priority of

operators. Associativity means when two or more operators have same priority then from which side

(left or right) we operate For example if we write a * b / c then in this expression * and / has got same

priority so whether we perform a * b first or b / c first or in other way we should consider b as part of

sub-expression b / c or part of sub-expression a * b. In python except assignment operator (right to

left) all other operators have associativity from left to right.

As we know associativity of * and / is from left to right so sub-expression a * b will be performed first

then the result of a * b will be divided by c.

See some of the examples scripts with explanations in table given below:

Sr.No Script Explanation

1. a=2;b=3;c=4

d=a*4//b+c-10%3

print('d=',d)

OUTPUT:

d=5

As priority of say opr1 (* , / , %) is higher

than say opr2 (+ ,-).,so expressions involving opr1

are evaluated first . Again at the same level the

associativity of opr1 is from left to right, so

evaluation will proceed as:

 d= 2 * 4 // 3 + 4 – 10 % 3

 = 8 // 3 + 4 – 10%3

 = 2 + 4 – 10%3

 = 2 + 4 -1

 = 6-1

 = 5 .

2. a=12;b=3;c=4

d=(a-b)/c

print('d=',d)

OUTPUT:

D=2.25

We want to evaluate difference of a and b

divided by c. For that we must write (a - b) / c. As

precedence of / is more than – if we write a – b / c

then initially b/c will be evaluated that we don’t

want. So whenever we want to evaluate an

expression irrespective of the priority of the

operator we write the expression within

parenthesis.

3. a=4;b=4;c=2

d=a * 2 and b >

c - (not c)

print('d=',d)

OUTPUT:

d=True

First not c is evaluated so c becomes False(0).

The rest of the expression is evaluated as:

 = (4 * 2) and 4>3 – 0

 = 8 and 4 >(3 – 0)

 = 8 and (4>3)

 = True and True

Python Programming Simplified

87

 = True

In relational operator expression will be either

true or false. 1 denotes True and 0 denotes false. In

logical operator operands are compared with 0. If

they are nonzero then condition is interpreted as

true. In the above case as 4>3 is true so 1 is

assumed at this place. In the next step 8 is nonzero

as well as 1 is nonzero. As both conditions of

logical and are true, the whole expression is true

and a True is assigned to d.

4. a=2;b=4;c=3

x=a**2>10+b%c*3

print("x=",x)

OUTPUT:

x=False

The expression is evaluated as:

x=2**2>10+4%3*3

x=4>10+4%9

x=4>10+4

x=4>14

x=False

5. a=10;b=1;c=5

x=a>>1-

b+c%3<<2*c

print("x=",x)

OUTPUT:

x=2048

The expression is evaluated as:

x=10>>1-1+5%3<<2*5

x=10>>1-1+2<<10

x=10>>0+2<<10

x=10>>2<<10

x=2<<10

x=2048

In the precedence table not all the operators we have discussed yet. The same will be explored in the

coming chapters. But the table illustrating precedence of operators with the examples above must have

given you good confidence about solving expression involving mix of operators.

2.10 Rvalue and Lvalue

The Python interpreter classifies all data types into two categories: One is Lvalue and second is

Rvalue.

Lvalue is an expression that refers to an object that can be examined as well as altered. The Lvalue

denotes an object that is the address of the data object. Lvalue has got its name because of values

appearing on the left-hand side of assignment These values are something which can store values thus all

objects which are mutable / modifiable are Lvalue. Examples are list, sets and dictionaries.

Python Programming Simplified

88

The second category Rvalue permits examination but not alteration. The Rvalue is the value residing

in the address.That is, the python assigns the read only storage to objects under this category. All non-

modifiable objects are Rvalue in python. They are also known as immutable. The examples of this

category are: Constants/literals, Function names, int, float, complex, string, tuple

See some small examples:

>>> x=10

>>> y=20

>>> 20=x

 File "<stdin>", line 1

SyntaxError: can't assign to literal

In the above case values 10 and 20 are r-value. The variables x and y are storing the values 10 and 20

so they are l-value but last assignment gives error as you cannot assign x to an r-value 20.

Consider the following statements:

x=5

y=x

In the first assignment statement, x is an Lvalue. Hence , x is treated as a name for a particular memory

location and the value 5 is stored in that memory location, which is Rvalue. In the second assignment

statement, x is not an Lvalue and hence the value stored in the memory location is referred to by x.

But note that x is an integer and are not mutable. Let’s check this in python session:

>>> x=10

>>> id(x)

1358917376

>>> x=x+1

>>> id(x)

1358917408

After writing x=x+1 a new x is created as integer does not support modification.

As another example:

>>> x='example'

>>> x[0]='C'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Here in the above case ‘C’ is R-value and x[0] is also a R-value as it cannot be modified. To assign ‘C’

to the left of ‘=’ operator we need Lvalue which x[0] is not.

Python Programming Simplified

89

List are mutable, and this can be easily seen using an example below:

>>> L=[1,2,3,4]

>>> id(L)

1903700100040

>>> x=L

>>> x[0]=90

>>> L

[90, 2, 3, 4]

>>> id(x)

1903700100040

In the above a simple List containing 4 integers is created. When you write x=L you are creating a

reference to L and changing any element through x reflected in original L. Thus by writing x[0]=90 you

changes first element of list L to 90 !. Here x[0] is an Lvalue that can be modified and 90 is Rvalue.

Even id functions give you same object location.

2.11 The math module

A module is a python file that comprises functions and classes. All the functions we have seen so far

belong to the default module: builtins. The detailed discussion of modules will be done in a separate

chapter later. Here we discuss various mathematical functions of math module. To use a module, you

need to import the module using import keyword as:

import math

Once imported you can have access to all the functions of this module as: math.funcname

Here funcname is any function name. To see all the attributes and functions of math module just type

dir(math) after importing math module. See the shell session below:

>>> import math

>>> dir(math)

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos',

'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',

'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs',

'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot',

'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',

'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'sin',

'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

>>> len(dir(math))

54

The dir function returns a list of all attributes and functions in the math module. As you can starting

from acos and excluding e and pi there are around 47 functions which can be used in various

mathematical situations. For detail on every function you can make use of help function or refer python

documentation.

>>> help(math.exp)

Python Programming Simplified

90

Help on built-in function exp in module math:

exp(...)

 exp(x)

 Return e raised to the power of x.

Here we discuss some of the commonly used math functions with examples

Table 2.14: Examples of math functions

Sr.No Function Description Example

1. ceil(x) Return the ceiling of x as an

Integral.This is the smallest

integer >= x

>>>math.ceil(3.4)

4

>>>math.ceil(-3.4)

-3

2. floor(x) Return the floor of x as an

Integral.This is the largest

integer <= x.

>>> math.floor(3.4)

3

>>> math.floor(-3.4)

-4

3. fabs(x) Return the absolute value of the

float x.

>>> math.fabs(-34)

34.0

>>> math.fabs(34)

34.0

4. factorial(x

)

Return factorial of input value

Raise error if x is negative or

non-integral

>>> math.factorial(5)

120

>>> math.factorial(-1)

Traceback (most

recent call last):

 File "<stdin>", line

1, in <module>

ValueError:

factorial() not defined for

negative values

5. trunc(x) Truncates x to the nearest

Integral toward 0

>>> math.trunc(3.45)

3

>>> math.trunc(-3.45)

-3

6. exp(x) Return e raised to the power of >>> math.exp(2)

Python Programming Simplified

91

x. 7.38905609893065

>>> math.exp(-2)

0.135335283236612

7

7. pow(x,y) Return x**y (x to the power of

y)

>>> math.pow(2,3)

8.0

>>> math.pow(2,-3)

0.125

8. sqrt(x) Return the square root of x. >>> math.sqrt(5)

2.23606797749979

>>> math.sqrt(-5)

Traceback (most recent

call last):

File "<stdin>", line 1, in

<module>

ValueError: math domain

error

9. gcd(a,b) greatest common divisor of x

and y

>>> math.gcd(99,78)

3

>>> math.gcd(97,11)

1

10. radians(x) Convert angle x from degrees to

radians

>>>

math.radians(30)

0.523598775598298

8

11. sin(x) Return the sine of x (measured in

radians)

>>> x=math.radians(30)

>>> math.sin(x)

0.499999999999999

94

12. log2(x) Return the base 2 logarithm of x >>> math.log2(8)

3.0

>>> math.log2(32)

5.0

13. log10(x) Return the base 10 >>> math.log10(10)

Python Programming Simplified

92

logarithm of x 1.0

>>> math.log10(100)

2.0

14. log(x[, base]) Return the logarithm of x to the

given base.If the base not

specified, returns the natural

logarithm (base e) of x.

>>> math.log(10)

2.302585092994046

>>> math.log(10,10)

1.0

>>> math.log(8,2)

3.0

15. pi Math constant , the ratio 22/7 >>> math.pi

3.141592653589793

16. e Math constant >>> math.e

2.718281828459045

Like sin(x) we have functions for cos(x), tan(x).

2.12 Points to Ponder

1. An operator is a symbol used to manipulate the data. The data items that the operators act upon

are called operands. In a+b, a and b are operands and + is a operator.

2. A valid combination of constants, variables and operators constitutes an expression.

3. When several operators appear in one expression, evaluation takes place according to certain

predefined rules which specify the order of evaluation and are called precedence rules.

4. Python supports seven types of operators: Arithmetic, logical, relational, bitwise, assignment,

membership, identity.

5. Arithmetic operators // is used for integer division and / for float division.

6. The operators % is known as remainder operator and works with both float and integers

7. Relational operator are also known as comparison operators. They return either True or False

value. A True is equivalent to numeric 1 and False is equivalent to 0.

8. Python supports parallel assignment using comma separated values. For example : a, b

,c=10,20,30 initializes a to 10, b to 20 and c to 30 at once.

9. Relational expressions use numeric data and relational operators whereas logical expressions

use logical values and logical operators. A logical expression may contain relational expression,

but reverse is not true.

10. To divide an integer by 2n a right shift by n bit positions is applied. To multiply an integer by

2n a left shift by n positions is applied. As an example to divide 16(10000) by 4 which is 22 we

right shift 16 (10000) by 2 bits and get the answer as 00100 which is 4 in decimal.

Python Programming Simplified

93

11. In case of logical operator and and or , if the left operand yields false value, the right operand is

not evaluated by a compiler in a logical expression using and. If the left operand yields true

value, the right operand is not evaluated by the compiler in a logical expression with the

operator or. The operators and and or have left to right associativity, hence the left operand is

evaluated first and based on the output, the right operand may or may not be evaluated. As an

example, consider the following expression:

 (10>=15) and (5!=4)

 The left operand of and i.e (10>=15) is false so right operand i.e (5!=4) is not evaluated.

If it were or in the above expression in place of and , second operand would have been

checked.

12. Membership operator in and not in checks membership of an element within a collection.

13. The identity operator is and not is are used to check similarity of the two operands. By

similarity means pointing to the same objects in the memory.

14. Precedence tells in an expression which operation should be performed first depending upon

priority of operators. Associativity means when two or more operators have same priority then

from which side (left or right) we operate.

Python Programming Simplified

94

3. Decision Making

3.1 Introduction

Decision making statements are needed to alter the sequence of the statements in the program

depending upon certain circumstances. In the absence of decision-making statements, a program

executes in the serial fashion statement by statement basis. We have seen examples in the programs

given in earlier chapters. In this chapter we are going to write statements which control the flow of

execution based on some decision. Decision can be made based on success or failure of some logical

condition. They allow us to control the flow of our program. These conditions can be placed in the

program using decision making statements. Python language supports the following decision making /

control statements:

(a) The if statement.

(b) The if-else statement.

(c) The if-else-if ladder statement.

All these decision-making statements checks the given condition and then executes its sub block if the

condition happens to be true. On falsity of condition the block is skipped. A block is a set of statements

created with colon (:) and proper indention. All control statement uses a combination of relational and

logical operators to form conditions as par the requirement of the programmer.

3.2 The if statement

The general syntax of if statement is as:

if (condition):

statement(s)

Python Programming Simplified

95

Figure 3.1: Flowchart of if statement

The if statement is used to execute / skip a block of statements based on truth or falsity of a condition.

The condition to be checked is put inside the parenthesis (not necessary sometimes) which is preceded

by keyword if. All the statements which are indented by the python rules (4 spaces or tab) constitute the

body of the if block. The first statement not following the indention of if ends the if block.

In case of one or two statements constituting body of the if block, they can be written just after the

colon : .

We present number of small scripts to illustrate if statement.

Sr.No Script Explanation

1

.

x=10

if x>0:

 print("x is greater than 0")

OUTPUT:

 x is greater than 0

if is a conditional execution statement.

It’s a keyword. The condition to be

checked is written after if. For better

readability parenthesis can also be used

for enclosing condition. If the condition

is true the first statement after the if

gets executed, else it is skipped. Here

the condition is true so the output.

2

.

x=1

if x==0:

 print("x is equal to 0")

OUTPUT:

Blank screen

The if condition is false and there

is only one statement just after if which

will be skipped due to false condition,

so the output.

3

.

x=51

if x<40:

 print("x less than 40")

print("x greater/equal to forty")

OUTPUT:

x greater/equal to forty

Only the first statement after if is

in the body of if due to indention. The

next print statement always executes

regardless of truth or falsity of if

condition.

4

.

x=int(input("Enter the value of

x\n"))

if x>=100:

 print("x greater or equal to

100")

 print("you think high")

print("x less than 100")

The statement after the if block

executes regardless of truth or falsity of

if condition. Just two statements

constitute the body of the if block and

last statement is not part of the if

block’s body.

Python Programming Simplified

96

OUTPUT:

(FIRST RUN)

Enter the value of x

100

x greater or equal to 100

you think high

x less than 100

(SECOND RUN)

Enter the value of x

12

x less than 100

5

.

x=12

if x:

 print(x," is not zero")

OUTPUT:

12 is not zero

if x is interpreted as if x!=0 or if

x!=False or if x==True or if x==1. All

convey same meaning.

6

.

x=0

if not x:

 print(x," is zero")

OUTPUT:

0 is zero

if not x is interpreted as if x!=1 or

if x!=True or if x==False or if x==0.

All convey same meaning.

3.2.1 Short hand if

Python also provide a short hand version of if when one or two statements only are body of the if block.

See some examples:

Example 1:

x=10

if x>0: print (x,"is positive")

Example 2:

x=10

if x==10: print ('I executes'); print ('Me too')

The second example demonstrates that multiple statement can also be written separated by semicolon in

the body of short hand if.

3.3 The if-else statement

In all the above programs we didn’t write the other side of if condition ie we didn’t take the action

Python Programming Simplified

97

when the condition fails. The if-else construct allows us to do this.

Its general syntax is

if(condition):

 statement(s)

else:

 statement(s)

Figure 3.2: Flow chart of if-else

If the condition within if is True all the statements within the block(body of if) following if are

executed else they are skipped and else part (body of else) get executed.

We present number of scripts to illustrate if-else statement.

Script 3.1 To check number is even or odd

x=int(input('Enter an integer\n'))

if x%2==0:

 print (x,' is even')

else:

 print(x,' is odd')

OUTPUT:

Enter an integer

34

34 is even

The priority of % is higher then == , so x%2 is compared to 0 . If this is True then number is even else

Python Programming Simplified

98

number is not even. The else part executes only when if part is false and vice-versa.

Script 3.2 To check whether a number is +ve or -ve

x=int(input('Enter any number\n'))

if x>0:

 print (x,' is positive')

else:

 print(x,' is negative')

OUTPUT:

Enter any number

54

54 is positive

If the number is greater than zero the number is positive and if the number is less than zero then

number is negative.

The above code does not handle the case when instead of a +ve or -ve number the user supplies a 0 as

input. If the user supplies zero (0) as input, if condition is false and else part get executed which prints

“number is –ve”. But in reality number is zero not negative so we modify the above script and give

you the next script which handles this. .

Script 3.3 To check whether a number is +ve , -ve or zero

x=int(input('Enter any number\n'))

if x==0:

 print(x,' is zero')

if x>0:

 print (x,' is positive')

else:

 print(x,' is negative')

OUTPUT:

Enter any number

0

0 is zero

0 is negative

There is one small change in the script from the previous one. We have added a simple if condition

Python Programming Simplified

99

which check whether number is zero or not.

The above program works fine but is less efficient. If the input happens to be zero then we need not

check the later if condition. Out of the two : simple if and one if-else part we want only one part should

get executed. The solution is simple exit from script once the first if condition for checking zero is

satisfied. This can be done as:

if x==0:

 print(x,' is zero')

 import sys

 sys.exit()

To terminate the script at any point in the code we can make use of exit function present in sys module.

Now whenever user enters 0 in the above script this if block executes and script terminates. If input is

not zero then if-else part executes.

The code can also be written efficiently using else-if ladder that we will see later in this chapter.

Script 3.4 Maximum of two numbers

x=int(input('Enter first number\n'))

y=int(input('Enter second number\n'))

if x>y:

 print(x,' is greater than ',y)

else:

 print(y,' is greater than ',x)

OUTPUT:

Enter first number

10

Enter second number

20

20 is greater than 10

The code is easy to understand but once again what if two number entered by user happens to be equal.

The code does not handle this case. Can you rewrite the code to handle this?

Script 3.5 To calculate gross salary of a person. Given #basic

salary(bs) as input. If bs is >5000 da=55% of bs and #hra=15% of bs else

da=45% of bs and hra=10% of bs

bs=float(input("Enter your basic salary\n"))

if bs<=5000:

 da=bs*0.45

 hra=bs*0.10

Python Programming Simplified

100

else:

 da=bs*0.55

 hra=bs*0.15

gs=bs+da+hra

print("Basic salary is %f"%bs)

print("HRA is %f"%hra)

print("DA is %f"%da)

print("Gross salary is %f"%gs)

OUTPUT:

Enter your basic salary

6000

Basic salary is 6000.000000

HRA is 900.000000

DA is 3300.000000

Gross salary is 10200.000000

We input the basic salary in bs. Through if condition we check basic salary bs against 5000. Depending

upon whether if condition is true or false hra and da are calculated as per the condition specified in the

problem.

3.3.1 Short hand if-else

Like short hand if , Python provides short hand if-else statement. It can be used whenever body of the if

and else contains one statement. The syntax is:

statement if condition else statement

Note the statement to be executed is written first for if but later for else.

See one simple example:

x=10

print('Hello') if x else print('Bye')

OUTPUT:

Hello

Here the value of x is 10 so if condition turns out to be true and print statement before if gets executed.

Let’s rewrite our even-odd script using short hand if-else

script 3.6 Even odd using short hand if-else

x=int(input('Enter an integer\n'))

print(x,' is even') if x%2==0 else print(x,' is odd')

OUTPUT:

Enter an integer

Python Programming Simplified

101

10

10 is even

The code is easy to understand. Note the brevity and simplicity of code within just two lines.

3.4 Nesting of if-else’s

Nesting of if-else means one if-else or simple if as the statement part of another if-else or simple if

statement. There may be various syntaxes of nesting of if-else. We present few of them.

1. if(condition):

 if (condition):

 statement(s)

 else:

 statement(s)

 else:

 statement(s)

In the above case there is a nested if-else inside outer if.

2. if(condition):

 statement(s)

 else:

 if(condition):

 statement(s)

 else:

 statement(s)

Here the else part has nested if-else.

3. if (condition):

 if(condition):

 statement(s)

 else:

 statement(s)

 else:

 if(condition):

Python Programming Simplified

102

 statement(s)

 else:

 statement(s)

Here both the outer if and outer else has nested if-else

We give number of examples of nesting of if-else’s which are based on the above syntax .

#Script 3.7 To check whether a year is leap or not using nested if-else

year=int(input("Enter any year\n"))

if(year %100 ==0):

 if(year %400 ==0):

 print("The given year is leap year")

 else:

 print("The given year is not a leap year")

else:

 if(year %4 ==0):

 print("The given year is leap year")

 else:

 print("The given year is not a leap year")

OUTPUT:

(first run)

Enter any year

2000

The given year is a leap year

(second run)

Enter any year

2005

The given year is not a leap year

A year is leap year if it is completely divisible by 100 and 400 or not divisible by 100 but divisible

by 4. Initially if the year %100 is zero, the inner if checks if the year %400 is zero. If this is so the

year is leap else year is not leap. If the outer if fails its corresponding else part executes in which we

check year % 4==0 , if this is true the year is leap else year is not leap.

Script 3.8 To check whether a year is leap or not using logical

operators and if-else

year=int(input("Enter any year\n"))

c1=year%100==0 and year%400==0

Python Programming Simplified

103

c2=year%100!=0 and year%4==0

if(c1 or c2):

 print("The given year is leap year ")

else:

 print("The given year is not a leap year")

The use of and and or| operator have reduced the length of the program as well as has made it more

readable and efficient. c1 and c2 are temporary variables introduced. If any of them is True the if

condition is true and year is leap year else year is not leap year.

Script 3.9 Maximum of three numbers

a,b,c=input('Enter three integers separated by space\n').split()

a=int(a);b=int(b);c=int(c);

if(a==b and a==c):

 print("All three are equal")

else:

 if a>b:

 if a>c:

 max=a

 else:

 max=c

 else:

 if b>c:

 max=b

 else:

 max=c

 print(max," is greater ")

OUTPUT:

(First Run)

Enter three integers separated by space

10 20 5

20 is greater

(Second Run)

Enter three integers separated by space

10 10 10

All three are equal

Python Programming Simplified

104

If all the numbers are not equal we check if a>b , if this is true it means a is greater than b, we then

check a>c if this is so then a is the greatest else c is greatest. If a>b is false initially it means b is

greater than a , we then check whether b>c , if this is so then b is greatest else c is greatest.

Script 3.10 To check number is +ve,-ve or zero using nested if-else

num=int(input('Enter any number\n'))

if(num==0):

 print(num," is zero ")

else:

 if num>0:

 print(num,' is positive')

 else:

 print(num,' is negative')

OUTPUT:

Enter any number

-90

-90 is negative

There are three cases to consider: input number may be +ve,-ve or zero. The first possibility is handled

by the outer if and rest two are handled by if-else nested within outer else part.

3.5 else-if ladder

The general syntax of else-if ladder is

if(condition):

statement(s)

elif(condition):

statement(s)

else(condition):

statement(s)

If the first if condition is satisfied, then all its related statements are executed and all other elif ’s (elif is

short for else-if, one or more elif may be present) are skipped. The control reaches to first elif only if

the first if fails. Same for second, third and other elif ’s depending upon what your program required.

That is out of this else-if ladder only one if condition will be satisfied.

We present number of programs to illustrate else-if ladder construct.

Script 3.11 Maximum of three numbers using else-if ladder

a,b,c=input("Enter the three numbers separated by space\n").split()

a=int(a);b=int(b);c=int(c)

if(a==b and a==c):

Python Programming Simplified

105

 print("All three are equal")

elif (a>b and a>c):

 print("maximum is ",a)

elif(b>a and b>c):

 print("maximum is ",b)

else:

 print("maximum is" ,c)

OUTPUT:

(First Run)

Enter the three numbers separated by space

10 20 30

maximum is 30

(Second Run)

Enter the three numbers separated by space

40 40 40

All three are equal

In the script if all three inputs are equal , first if condition is satisfied and after executing its body code

exits . If first if fails it is checked whether a is greater or b is greater by the subsequent two elif

conditions using logical and operator else c is found to be the maximum. The logical operator and have

been used for finding maximum of three numbers.

Script 3.12 Arrange three numbers in Ascending order

a,b,c=input("Enter the three numbers separated by space\n").split()

a=int(a);b=int(b);c=int(c)

logic to find max begins

if (a>b and a>c):

 max=a

elif(b>a and b>c):

 max=b

else:

max=c

logic to find max ends

logic to find min begins

if (a<b and a<c):

 min=a

elif(b<a and b<c):

 min=b

Python Programming Simplified

106

else:

 min=c

logic to find min begins

mid=a+b+c-(max+min)

print('Three numbers in ascending order')

print(min,",",mid,",",max)

OUTPUT:

Enter the three numbers separated by space

10 5 8

Three numbers in ascending order

5 , 8 , 10

In the variable max we have stored the maximum among three and in the variable min we have stored

the minimum among three. The mid is calculated by subtracting (min+max) from the sum of a, b and c

i.e. (a+b+c).

Script 3.13 To determine the status of entered character

ch=input("Enter a character\n")

avalue=ord(ch)

if(avalue>=65 and avalue<=90):

 print("U entered uppercase letter")

elif (avalue>=97 and avalue<=122):

 print("U entered lowercase letter")

elif(avalue>=48 and avalue<=57):

 print("U entered a digit")

else:

print("U entered a special symbol")

OUTPUT:

Enter a character

8

U entered a digit

The ASCII values for lowercase alphabets is from 97 to 122 (inclusive both) and for uppercase it is

from 65 to 90 (inclusive both). The value is obtained by applying ord function to entered character. It

is checked whether the entered character is within these two ranges using else-if ladder. Similarly,

ASCII values for digits are from 48 to 57 (inclusive both) so character entered is also checked with this

range. If all three conditions fail then the character entered must be a special symbol.

As arithmetic and relational operation can easily be carried out on characters too the above code can be

written as:

Python Programming Simplified

107

ch=input("Enter a character\n")

if(ch>='A' and ch<='Z'):

 print("U entered uppercase letter")

elif (ch>='a' and ch<='z'):

 print("U entered lowercase letter")

elif(ch>='0' and ch<='9'):

 print("U entered a digit")

else:

 print("U entered a special symbol")

The code is same as previous one but instead of ASCII values of characters we have written characters

within single quotes.

Script 3.14 Case conversion

ch=input("Enter a character\n")

if(ch>='A' and ch<='Z'):

 print("lower case is :",chr(ord(ch)+32))

elif (ch>='a' and ch<='z'):

 print("upper case is :",chr(ord(ch)-32))

else:

 print("not an alphabet")

OUTPUT:

Enter a character

P

lower case is : p

Difference between ASCII values of uppercase and lowercase alphabet is 32 ie 'A'+32='a' or 'a'-

32='A'. But python does not allow us to perform addition of string and an integer. The trick is to first

convert character into integer and perform addition. The result then can be converted back to character

using chr function.

Take an example to understand

ch=’a’

ord(ch) gives you 97; ord(ch)-32 gives you 65 and chr(65) gives you ‘A’.

Script 3.15 To determine grade of student based on its percentage

m1,m2,m3=input("Enter the marks in three subjects(max 100)\n").split()

m1=float(m1);m2=float(m2);m3=float(m3);

Python Programming Simplified

108

if((m1<1 or m1>100) or (m2<1 or m2>100) or (m3<1 or m3>100)):

 print("Marks must be within rang 1 to 100 ")

 import sys;sys.exit()

per=(m1+m2+m3)/3

if(per>=90):

 print("Grade is A\n")

elif(per>=80 and per<90):

 print("Grade is B\n")

elif(per>=70 and per<80):

 print("Grade is C\n")

elif(per>=60 and per<70):

 print("Grade is D\n")

elif(per>=50 and per<60):

 print("Grade is E\n")

else:

 print("Fail\n")

OUTPUT:

(First Run)

Enter the marks in three subjects(max 100)

94 95.5 93.5

Grade is A

(Second Run)

Enter the marks in three subjects(max 100)

101 78 -20

Marks must be within rang 1 to 100

Initial if condition ensures that user enters marks within range 1 to 100.If they are not then we display a

message and exit the script. Based on percentage, we display the grade of the student. For calculation

of percentage we have reduced (a+b+c)/100*300 to just (a+b+c)/3. If per>=90 we display grade is A

else for per in between 80 to 90 the grade is B and so on.

Script 3.21 Determine root of quadratic equation

from math import sqrt

from sys import exit

a,b,c=input("Enter value of a, b and c\n").split()

a=float(a);b=float(b);c=float(c)

dis=b*b-4*a*c

if dis<0:

Python Programming Simplified

109

 print("Roots are imaginary\n")

 exit()

elif dis==0:

 print("Roots are equal\n")

 r1=r2=-b/2*a

else:

 print("Roots are unequal\n")

 r1=(-b+sqrt(dis))/(2.0 *a)

 r2=(-b-sqrt(dis))/(2.0 *a)

print("Root 1= %f"%r1)

print("Root 2= %f"%r2)

 OUTPUT:

(First Run)

Enter value of a, b and c

1 7 12

Roots are unequal

Root 1= -3.000000

Root 2= -4.000000

(Second Run)

Enter value of a, b and c

1 2 1

Roots are equal

Root 1= -1.000000

Root 2= -1.000000

The quadratic equation in mathematics is given as:

 AX2 +BX+C = 0

Where A, B and C are constants. The solution of the equation comprises of two roots as power of

X is 2.

 X1= (-B + √ B*B – 4*A*C) / (2 * A)

 X2= (-B - √ B*B – 4*A*C) / (2 * A)

The expression B*B- 4*A*C is known as discriminant (say dis)and on the basis of its value the roots

are determined as equal (dis==0), imaginary (dis<0) or unequal (dis>0) as shown in the program.

In the program we take as input the three constant’s value using A, B and C and calculated the value of

dis. The sqrt function has been imported from math module and exit function from sys module in the

Python Programming Simplified

110

first two lines of the script.

Script 3.22 calculate electricity bill according to the given

condition:

For first 50 units Rs. 0.60/unit

For next 100 units Rs. 0.85/unit

For next 100 units Rs. 1.30/unit

For unit above 250 Rs. 1.60/unit

An additional surcharge of 25% is added to the bill.

unit=int(input("Enter number of units used "))

variables to hold charges per unit and surcharge rates

c50=0.60

c150=0.85

c250=1.30

cover250=1.60

srate=0.25

Calculation of charges on units

if unit <= 50:

 amt = unit * c50

elif unit <= 150:

 amt = 50*c50 + (unit-50) * c150

elif unit <= 250:

 amt = 50*c50 + 100*c150+(unit-150) * c250

else:

 amt = 50*c50 + 100*c150+100*c250+(unit-250) * cover250

surcharge = amt * srate

total = amt + surcharge

print("Electricity Bill = Rs %6.2f"%total)

OUTPUT:

Enter number of units used 230

Electricity Bill = Rs 273.75

The input to the script is the number of units consumed and stored in variable unit. The variables c50,

c150 ,c250 and cover250 denotes the per unit rates for units<=50, units<=150 , units<=250 and

units>250 respectively. The variable srate is for storing surcharge rate.

Python Programming Simplified

111

If unit consumed is say 90 units then for first 50 units charges will be 50*c50 and for remaining units

(90-50) charges will be 40*c150. We show you one example for units consumed =230 then calculation

is done as:

1. First 50 units: 50*c50 = 50 *0.60=30

2. Next 100 units 100*c150=100*0.85=85

3. Next 80 units (230-150) 80*c250=80*1.30=104

Total amount without surcharge will be: 30+85+104=219

Final amount with surcharge = 219+219*0.25 => 219+54.75=273.75

3.6 Ponderable Points

1. The flow of execution may be transferred from one part of a program to another part based on the

output of the conditional test carried out. It is known as conditional execution.

2. if, if-else, if-else-if are known as selective control structures.

3. Any block in python can be created using : and proper indentation (tab or 4 space)

4. Between two codes if (x = = 0) and if (0 = = x) the later one is preferred. By mistake if (0== x) is

written it will produce error, whereas the first one will accept.

5. Short hand if syntax: if condition statement

6. Multiple statements can be written in short hand if in single line separated by semicolon .

7. Short hand if-else syntax: statement if condition else statement

8. The else-if ladder can be used to check multiple conditions and out of that only one condition will be

true.

9. There is no switch-case construct present in python as found in C/C++/Java .

Python Programming Simplified

112

4. LOOPING

4.1 Introduction

Looping is a process in which set of statements are executed repeatedly for a finite or infinite number

of times. Python provides two ways to perform looping by providing two different types of loop.

Looping can be called synonymously iteration or repetition. Loops are the most important part of

almost all the programming language such as C, C++, java, C#, R, Rust etc.

In our practical life we see lots of examples where some repetitive tasks has to be performed like

finding average marks of students of a class, finding maximum salary of group of employees, counting

numbers etc.

A loop is a block of statements which are executed again and again till a specific condition is satisfied.

Python provides two loops to perform repetitive actions.

 1. while

 2 .for

To work with any type of loop three things must be performed:

(a) Loop control variable and its initialization

(b) Condition for controlling the loop.

(c) Increment / decrement of control variable.

Let’s work first with the while loop.

4.2 The while loop

The syntax of the while loop is simple.

while(condition):

 statement(s)

The statements that follows in the indented block of while loop is called body of the while loop. All the

statements within the body are repeated till the condition specified in the parenthesis in while is True.

As soon as condition becomes false the body is skipped and control is transferred to the next statement

outside the loop which is not in indention of while loop.

Let’s write few programs to understand the while loop better.

Script 4.1 demo of while loop (printing number 1 to 5)

t=1

while t<=5:

 print("t=",t)

Python Programming Simplified

113

 t=t+1

print("Out of loop")

OUTPUT:

t= 1

t= 2

t= 3

t= 4

t= 5

Out of loop

In the while loop we have stated the condition t<=5. t is called loop control variable. Initially value of t

is 1.This value of t is compared with 5 which is True so control reaches into the while loop body and

print statement within loop executes which prints the value of t. Then t is incremented by 1 ie

becomes 2. Control reaches back to the condition of the while loop which is true (2<=5). This process

continues. When value of t becomes 6, which causes condition in the while loop to become false and

control comes out of loop. The statement outside the while loop executes.

If you want to display just numbers in the same line then the above script can be modified as:

t=1

while t<=5:

 print(t,end=' ')

 t=t+1

print("\nOut of loop")

Here we have used named parameter end in print function to set space. Because of this ‘\n’ is required

in next print statement outside while loop to print on next line.

Script 4.2 printing number 5 to 1 using while loop

t=5

while t>=1:

 print("t=",t)

 t=t-1

print("Out of loop")

OUTPUT:

t= 5

t= 4

t= 3

t= 2

t= 1

Python Programming Simplified

114

Out of loop

The script is simple. Here we have printed the value from 5 to 1 by decrementing the control variable t

by 1 in each successive iteration till t>=1 condition is satisfied. .

Script 4.3 Printing all even numbers between 1 and 30

t=1

print("Even numbers between 1 and 30")

while t<=30:

 if t%2==0:

 print(t,end=' ')

 t=t+1

OUTPUT:

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

The program simply checks remainder when t is divided by 2. If it is 0 i.e. it is even number, and the

value of t is printed. This continues till t is less than equal to 30.

The other way is to start with t=2 and increment the control variable t by 2 in every loop iteration. This

is shown below:

t=2

print("Even numbers between 1 and 30")

while t<=30:

 print(t,end=' ')

 t=t+2

On the similar ground you can try printing all odd numbers between 1 and 30 or between any range.

Script 4.9 printing numbers between 1 and 100 which are

#completely divisible by 3 and 5

t=1

while t<=100:

 if(t%3==0 and t%5==0):

 print(t,end=' ')

 t=t+1

OUTPUT:

15 30 45 60 90

If remainder divided by 3 is zero then number is completely divisible by 3 . Same is true for 5 so we

have combined the two condition by and (logical AND) operator so if remainder in both the case is

zero then and condition will hold true and that number will be printed.

Python Programming Simplified

115

Script 4.11 generation of table of any given number

t=1

n=int(input("Enter any +ve number\n"))

while t<=10:

 value=n*t

 print("%2d x %2d = %3d"%(n,t,value))

 t=t+1

OUTPUT:

Enter any +ve number

5

 5 x 1 = 5

 5 x 2 = 10

 5 x 3 = 15

 5 x 4 = 20

 5 x 5 = 25

 5 x 6 = 30

 5 x 7 = 35

 5 x 8 = 40

 5 x 9 = 45

 5 x 10 = 50

Any +ve number is taken as input. The number n is multiplied by 1 through 10 inside the loop and the

loop counter, number and value is displayed by formatting as to produce the desired output. The %2d

means allocating width for 2 digits and %3d for 3 digits. This we have used for better alignment of

digits in output.

Script 4.12 maximum of n elements

t=1

n=int(input("Enter how many numbers\n"))

m=int(input("Enter the number\n"))

max=m

while t<=n-1:

 m=int(input("Enter the number\n"))

 if max<m:

Python Programming Simplified

116

 max=m;

 t=t+1

print("maximum element is ",max)

OUTPUT:

Enter how many numbers

5

Enter the number

34

Enter the number

12

Enter the number

56

Enter the number

78

Enter the number

4

maximum element is 78

Initially numbers of elements are taken in n. The first number is taken outside the loop and assumed to

be maximum; this number is stored in max. Then remaining numbers are taken inside the loop. On

each iteration the number is compared with the max, if the max is less then number taken then number

will be the maximum one. This is checked through if statement. In the end when control comes out

from while loop max is displayed.

Script 4.13 to reverse the number

rev=0

orig=int(input("Enter the number\n"))

while orig:

 r=orig%10

 rev=rev*10+r

 orig=orig//10

print("Reverse Number=",rev)

OUTPUT:

Enter the number

3456

Reverse Number= 6543

The logic to reverse a number is quite simple. Let’s understands it step by step inside the loop:

Python Programming Simplified

117

S 1 orig=3456 r=3456%10=6 rev=0*10+6=6 orig=3456//10=345

S 2 orig=345 r=345%10=5 rev=6*10+5=65 orig=345//10=34

S 3 orig=34 r=34%10=4 rev=65*10+4=654 orig=34//10=3

S 4 orig=3 r=3%10=3 rev=654*10+3=6543 orig=3//10=0

As orig is 0 so condition inside the while loop is false and control comes out of loop. The reverse

number in variable rev which is printed.

Script 4.14 To check number is palindrome or not

rev=0

orig=int(input("Enter the number\n"))

save=orig

while orig:

 r=orig%10

 rev=rev*10+r

 orig=orig//10

if save==rev:

 print(save," is palindrome")

else:

 print(save," is not palindrome")

 OUTPUT:

(First Run)

Enter the number

7723277

7723277 is palindrome

(Second Run)

Enter the number

12123

12123 is not palindrome

 A number is called palindrome if on reversing it is equal to the original number for e.g. 121

3223,656 etc. To check whether an entered number is palindrome or not simply reverse the number and

compare with the original number but as we have seen in the program to reverse a number, the original

number becomes zero when controls comes out from the loop. So we save the original number in a

variable before starting processing, in the above program it is in the save variable.

Python Programming Simplified

118

Script 4.16 To find number of digits in a given number

count=0

num=int(input("Enter the number\n"))

while num:

 num=num//10

 count=count+1

print("Number of digits=",count)

OUTPUT:

Enter the number

34545

Number of digits= 5

We keep on dividing the number by 10 and storing the result back in the original number. On each

iteration i.e. after divide we increment the counter count which counts the number of digits in the

number. See example below:

Initial num=3456 count=0

S1 num=345 count=1

S2 num=34 count=2

S3 num=3 count=3

S4 num=0 count=4

In step 4 when num becomes condition in the while loop becomes false and control comes out from

loop and prints the result. .

Script 4.17 To check whether a number is Armstrong or not

newnum=0

count=0

num=int(input("Enter the number\n"))

save=num;

counting number of digits in num

while num:

 num=num//10;

 count=count+1

storing back saved number in num

num=save;

Python Programming Simplified

119

main logic

while num:

 r=num%10

 newnum=newnum+r**count

 num=num//10

if newnum==save:

 print("Number ",save," is Armstrong")

else:

 print("Number ",save," is not Armstrong")

OUTPUT:

(First Run)

Enter the number

1634

Number 1634 is Armstrong

(Second Run)

Enter the number

275

Number 275 is not Armstrong

A number is called Armstrong if sum of count number of power of each digit is equal to the

original number For e.g. to check 153 is Armstrong number or not we see that number of digits are 3

then 13 + 53+ 33=> 1+125+27=>153 which is equal to the original number so number 153 is

Armstrong. Let’s see a four digit number 1634. Number of digits is 4 so 14 + 64 + 34 + 44=>

1+1296+81+256=>1634.

So script proceeds as follows. First find out number of digits, before doing this save the number in the

save variable. Now number of digits are stored in the count variable. num is 0 now so copy the value

from save to num.

Now steps of second loop are as follows:

Initially num=153 newnum=0 count=3

S1 r=153%10= newnum=0+3**3=0+27=27 num=153//10=15

S2 r=15%10=5 newnum=27+5**3=27+125=152 num=15//10=1

S3 r=1%10=1 newnum=152+1**3=152+1=153 num=1//10=0

As newnum contains 153 which is compared with the original number stored in save We get output

153 is Armstrong number.

Python Programming Simplified

120

Script 4.18 To find sum of digits of given number

s=0

num=int(input('Enter the number\n'))

while num:

 r=num%10

 s+=r

 num=num//10

print("Sum of digits of given number is ",s)

OUTPUT:

Enter the number

34567

Sum of digits of given number is 25

Finding sum of digits of a given number is quite simple. We extract each digit from right and sum it till

number does not become zero. For better understanding we follow the steps as :

Initial num=2345

S1 2345!=0 (true) r=2345%10=5 s=0+5=5 num=2345//10=234

S2 234!=0 (true) r=234%10=4 s=5+4=9 num=234//10=23

S3 23!=0 (true) r=23%10=3 s=9+3=12 num=23//10=2

S4 2!=0 (true) r=2%10=2 s=12+2=14 num=2//10=0

S5 0!=0(false)

In the fifth step condition in the while loop becomes false and the result is printed through s.

Script 4.19 Mini Area calculator using while and else if ladder

from sys import exit

choice=5

while(choice >=1 and choice <=5):

 print("Welcome to Area Zone")

 print("1.Area of Triangle")

 print("2.Area of Circle")

 print("3.Area of Rectangle")

 print("4.Area of Square")

Python Programming Simplified

121

 print("5.Exit")

 choice=int(input("Enter your choice(1 to 5)\n"))

 if choice==1:

 b,h=input("Enter the base and height of triangle\n").split()

 b=float(b);h=float(h)

 area=0.5*b*h

 print("Area of triangle is ",area)

 input("Press any key to continue...")

 elif choice==2:

 r=float(input("Enter the radius of circle\n"))

 import math

 area=math.pi*r*r

 print("Area of circle is ",area)

 input("Press any key to continue...")

 elif choice==3:

 l,b=input("Enter the length and bredth rectangle\n").split()

 l=float(l);b=float(b)

 area=l*b

 print("Area of rectangle is ",area)

 input("Press any key to continue...")

 elif choice==4:

 s=float(input("Enter the side of square\n"))

 area=s*s

 print("Area of square ",area)

 input("Press any key to continue...")

 elif choice==5:

 print("Bye Bye\n")

 exit()

 else:

 print("Better u know numbers")

 exit()

OUTPUT:

Welcome to Area Zone

1.Area of Triangle

2.Area of Circle

Python Programming Simplified

122

3.Area of Rectangle

4.Area of Square

5.Exit

Enter your choice(1 to 5)

1

Enter the base and height of triangle

20 7

Area of triangle is 70.0

Press any key to continue...

In the program the whole else if ladder is put into the while loop. In each different if test we find out

areas of triangle, circle, rectangle and square. After fulfilling one choice for the user the menu again

appears because of while loop. On entering 5 in the choice the program terminates.

4.2.1 Nesting of while loop

Nesting means one inside another. One while loop becomes body of the another while loop and for one

iteration of outer while loop inner while loop runs. The syntax is :

while condition:

 statement(s)

 while condition:

 statement(s)

Let’s understand it using a small example:

x=1

while(x<=3):

 y=1

 while(y<=4):

 print(x*y,end=' ')

 y=y+1

 x=x+1

 print('')

Initially the value of x is 1 and in the outer while loop condition x<=3 is satisfied. The first line in the

body of outer while is y=1 . The condition in the inner while loop is satisfied. The print statement

prints 1*1=1 and y is incremented. The inner while loop condition is checked and 1*2=2 is printed.

This continues till condition in the inner while loop is satisfied. When condition in the inner while loop

becomes false, x is increment by 1 and a new line is inserted because of print statement. The outer loop

continues with new value of x=2 and inner while loop runs for y=1 to 4 with the value of x=2. The

process continues, and we get the following output:

Python Programming Simplified

123

1 2 3 4

2 4 6 8

3 6 9 12

Let’s take one more example where we find sum of digits of a given number up to single digit.

Script 4.20 To find sum of digits of a given number upto single digit

count=sum=0

num=int(input("Enter the number\n"))

while(num>9):

 sum=0

 while num!=0:

 r=num%10

 sum=sum+r

 num=num//10;

 if(sum>9):

 num=sum

print("Sum of digits up to single digit is ",sum)

OUTPUT:

Enter the number

786

Sum of digits up to single digit is 3

For example, number is 4275 then sum of digits is 4+2+7+5 = 18. As 18 is more than 9 we repeat the

process and get the result 1+8 i.e. 9. This time answer is in single digit so we stop the process. In the

program for finding sum of digits we have used nesting of while loop.For sum of digits up to single

digit we have used outer while loop. When sum>9 , sum is assigned to num and for this num , sum of

digits are determined using inner while loop.

4.3 Break Statement

The break statement is used to come out early from a loop without waiting for the condition to become

false. When the break statement is encountered in the while loop or any of the loop which we will see

later, the control immediately transfers to first statement out of the loop i.e. loop is exited

prematurely. If there is nesting of loops the break will exit only from the current loop containing

it.

Let’s write some programs which make use of break statement

Python Programming Simplified

124

Script 4.21 demo of break statement

x=1

while x<=5:

 if x==3:

 break;

 print("Inside the loop x=",x)

 x=x+1

print("Outside the loop x=",x)

OUTPUT:

Inside the loop x= 1

Inside the loop x= 2

Outside the loop x= 3

 When x is 3 if condition becomes true, the body of the if statement is single break statement so all the

statements in the loop following the break are skipped and control is transferred to the first statement

after the loop which is print which prints Outside the loop x=3.

Script 4.22 Square of numbers

while True:

 num=int(input('Enter any number(-99 to quit)\n'))

 if num==-99:

 break

 print('Square of number is ',num*num)

print("Have a nice day !")

OUTPUT:

Enter any number(-99 to quit)

5

Square of number is 25

Enter any number(-99 to quit)

3

Square of number is 9

Enter any number(-99 to quit)

-99

Have a nice day !

The statement while (True) is an infinite loop as it interprets to while (True!=False) which is always

Python Programming Simplified

125

true so our loop runs for infinite number of times. To break out from loop we ask user to enter number

–99 which is checked through if condition and if it is true then we come out from loop through break

else prints square of the number entered.

Script 4.23 To check number is prime or not

flag=True

c=2

num=int(input("Enter the number\n"))

#Loop starts

while c<=num//2:

 if(num%c==0):

 flag=False

 break

 c=c+1

Loop ends

if flag:

 print("Number is prime")

else:

 print("Number is not prime\n")

OUTPUT:

Enter the number

11

Number is prime

A number is prime if it is completely divisible by 1 and itself for example 1,3,5,7,11,13,17,19,23

etc. To check whether a number is prime or not we start from a counter c=2 (every number divides by 1

) and continues till c<=num//2 since no number is completely divisible by a number which is more

than half of that number. For example 12 is not divisible by 7,8,9,10,11 which are more than 6. So

we check if the number is divisible by any number <=num//2 then it cannot be prime we set flag=False

and come out from loop. The flag was initialized to True in the beginning so if num%c==0 is true

control sets flag=False which means number is not prime else flag remains True which means control

never transferred to if block i.e. number is prime. So outside the loop we check this value of flag and

prints accordingly.

4.4 The continue statement

The continue statement causes the remainder of the statements following the continue to be

skipped and continue with the next iteration of loop. So we can use continue statement to bypass

curtain number of statements in the loop on the basis of some condition given by if generally. The

syntax of continue statement is simply

 continue

Python Programming Simplified

126

Lets write a program to illustrate continue statement.

Script 4.24 demo of continue statement

t=0

while t<=10:

 t=t+1

 if t%2:

 continue

 print(t,end=' ')

OUTPUT:

2 4 6 8 10

when t is an odd number continue in the body of the if condition cause loop to continue with the next

iteration of loop skipping print statement. If number is even the number is simply printed as continue

itself is skipped.

In the coming part of this program as well as in other chapters you will see lots of examples of

continue statement. The above program was just to give you an idea how continue statement works in

loop.

4.5 The for loop

This is second loop which we are going to examine in this section. The for loop is most frequently used

by programmers just because of its simplicity. The for loop in the python is different than other

programming languages like C/C++/Java. In python the for loop is used for iterating over a sequence. It

can be a range of numbers, list, tuple, dictionary etc. The syntax of for loop is :

 for element in sequence:

 statement(s)

Here the sequence can be anything as discussed just now: list, tuple, dictionary, set, array, range etc.

and element is any element that belongs to sequence. The body of the for loop continues if there are

elements in the sequence. After element takes the last value in the sequence the for loop exits.

Before we see any example of for loop let’s see what the range function in python it as most commonly

uses with for loop.

4.5.1 The range function

The range function in python generates sequence of numbers within range. The general syntax is :

range(start, stop, stepsize)

Numbers are produced in sequences starting from start, with an increment of stepsize for next element

in sequence up to stop (excluding). The default value for start and stepsize is 0 and 1 respectively. See

the first example in shell

>>> range(5)

Python Programming Simplified

127

range(0, 5)

>>> print(range(5))

range(0, 5)

As can be seen from the output in the shell that instead of getting sequence of numbers you are getting

the range(0,5) as output which is actually a range object. To get the sequence you need to convert this

range into list by applying list constructor as:

>>> list(range(5))

[0, 1, 2, 3, 4]

This is an important concept and you must make note of it. Further not all elements are generated

statically. The generation of next element of the sequence the range function simply remembers the

start, stop and stepsize and generates the next element on the fly. Important point to note that stop is

not included in generation of numbers.

See many other examples in shell:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(1,10,2))

[1, 3, 5, 7, 9]

>>> list(range(2,11,2))

[2, 4, 6, 8, 10]

>>> list(range(10,101,10))

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

>>> list(range(10,0,-1))

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> list(range(1,50,5))

[1, 6, 11, 16, 21, 26, 31, 36, 41, 46]

>>> list(range(5,50,5))

[5, 10, 15, 20, 25, 30, 35, 40, 45]

>>> list(range(5,51,5))

[5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

The examples in the shell are quite easy to understand. Just try them at your own and play with them to

have a feeling of understanding and confidence together.

The list generated through range and list constructed can also be stored in some other variable and

using len function the number of elements can also be found out.

>>> x=list(range(5))

>>> x

Python Programming Simplified

128

[0, 1, 2, 3, 4]

>>> len(x)

5

As you have now understood the concept of range function, let’s now use it with for loop

Sr.No Script Explanation

1. for i in range(5):

 print(i,end=' ')

OUTPUT:

0 1 2 3 4

The range(5) gives a

list of elements from 0 to 4.

In every iteration of for

loop I takes on the values 0

to 4 and in the body the

same value is displayed.

Note list constructor is note

required.

2. for i in range(5,0,-1):

 print(i,end=' ')

OUTPUT:

5 4 3 2 1

The loop runs from 5 to

1(inclusive)as 0 is the stop

element and step size is -1.

3. for i in range(1,20,2):

 print(i,end=' ')

OUTPUT:

1 3 5 7 9 11 13 15 17 19

Displays all odd

numbers between 1 and 20.

4. for i in range(2,21,2):

 print(i,end=' ')

OUTPUT:

2 4 6 8 10 12 14 16 18 20

Displays all odd

numbers between 1 and 20.

The table above has demonstrated some small examples of for loop with the range function. Many

more you can try yourself. Now we write some scripts where some processing on the elements on the

sequence is performed instead of just displaying them. Let’s see some example scripts.

#Script 4.25 To print and find sum of series 1+2+3+4+5...........

sum=0

n=int(input("Enter the number of terms\n"))

for i in range(1,n+1):

 print(i,"+",end=' ')

 sum=sum+i

print("\nSum of series is ",sum)

Python Programming Simplified

129

OUTPUT:

Enter the number of terms

7

1 + 2 + 3 + 4 + 5 + 6 + 7 +

Sum of series is 28

The number of terms is taken in the variable n. We run the loop from 1 to n with increment of 1. The

sum is stored in the variable sum initialized to 0 in the beginning.

Script 4.26 To print and find sum of series 1-2+3-4+5-…

sum=0

k=1

n=int(input("Enter the number of terms\n"))

for i in range(1,n+1):

 if i%2==0:

 print("-",i,end=' ')

 else:

 print("+",i,end=' ')

 sum=sum+(k*i)

 k=k*-1;

print("\nSum of series is ",sum)

OUTPUT:

Enter the number of terms

8

+ 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8

Sum of series is -4

In the series to be generated odd numbers are +ve and even numbers are –ve. We take one variable

k=1. k is multiplied by -1 inside the loop in each iteration.

Initially sum=0 + (1 * 1) gives sum=1 then k becomes k=1*-1= -1 which is used in the second

iteration of the loop. In the second iteration sum becomes sum=1+(2 * -1) =>sum=1 – 2 = -1 and value

of k changes to 1 again (-1 * -1 = 1) and this continues for n times.

Script 4.27 to print and find sum of series

#1^2+2^2+3^2+4^2+...........(^ stands for power)

sum=0

n=int(input("Enter the number of terms\n"))

for i in range(1,n+1):

 print("%d^%d+ "%(i,2),end=' ')

 sum=sum+i**2

Python Programming Simplified

130

print("\nSum of series is ",sum)

OUTPUT:

Enter the number of terms

5

1^2+ 2^2+ 3^2+ 4^2+ 5^2+

Sum of series is 55

We take number of terms in the n and run loop from 1 to n. On each iteration we found 2 to the power

i using power operator ** and add it to sum.

Script 4.28 To print and find sum of series 1 + x

+x^2+x^3+..........

sum=1

n=int(input("Enter the number of terms\n"))

x=int(input("Enter the value of x\n"))

print("%d+"%1,end=' ')

for i in range(2,n+1):

 print("%d ^ %d+"%(x,i),end=' ')

 sum=sum+x**i

print("\nSum of series is ",sum)

OUTPUT:

Enter the number of terms

5

Enter the value of x

2

1+ 2 ^ 2+ 2 ^ 3+ 2 ^ 4+ 2 ^ 5+

Sum of series is 61

As we have done in all earlier series scripts number of terms is taken in the variable n. We do take

value of x also in the variable x. The first term 1 is printed outside the loop and loop runs from 2 to n

and n+1 is stopping condition. The sum is initialized to 1 as first term is 1. Rest is self-explanatory.

Script 4.29 To find factorial of a number

fact=1

num=int(input("Enter a +ve integer number\n"))

if num<0:

 print("Enter +ve number only")

 import sys;sys.exit()

for i in range(1,num+1):

 fact=fact*i

Python Programming Simplified

131

print("The factorial of %d is %d\n"%(num,fact))

OUTPUT:

Enter a +ve integer number

6

The factorial of 6 is 720

The factorial of number say 5 is calculated by multiplying 5*4*3*2*1 or by multiplying 1*2*3*4*5

which will be 120. Initially fact is 1. We run the loop from 1 to num , it may be from num to 1 also. In

each iteration value of fact is multiplied by t and stored back in fact which is used in the next iteration.

For negative numbers we display a message and terminate the program. For better understanding let’s

take num=4

S1 t=1 fact=1 * 1 => 1

S2 t=2 fact=1 * 2 => 2

S3 t=3 fact=2 * 3 => 6

S4 t=4 fact=6 * 4 => 24 .

If you want to use factorial function without creating your own function, you can use math module’s

factorial function as:

>>> import math

>>> math.factorial(10)

3628800

Script 4.30 To check a number is perfect or not

sum=1

num=int(input("Enter a +ve integer number\n"))

for i in range(2,num//2+1):

 if num%i == 0:

 sum=sum + i

if(sum==num):

 print("The number is perfect")

else:

 print("The number is not perfect")

OUTPUT:

Enter a +ve integer number

28

The number is perfect

Python Programming Simplified

132

A number is called perfect if sum of its factor is equal to the number itself for e.g. 6 , its factor are

1 ,2, 3 and sum of its factor is 6 which is equal to the number 6 so it is a perfect number. Similarly

28 is a perfect number (1+2+4+7+14=28). In the loop we initialize sum to 1 and run the loop for

num//2 as for any number say i which is more than num//2 , num%i won’t be zero (excluding num

itself). .

4.6 Nesting of for loop

Nesting of for loop is used most frequently in many programming situations and one of the most

important usage in displaying various patterns which we will see in the coming programs. The general

syntax is :

for i in sequence:

 for j in sequence:

 statement(s)

 statement(s)

For each iteration of first for loop (outer for loop, control variable is i) inner for loop (control variable

j) runs as it is part of the body of outer for loop. The inner for loop has its own set of statements which

executes till the condition for inner for loop is true. Outer for loop may or may not other statements as

its body other than inner for loop. See number of programs given below.

Script 4.30 Nesting of for loop

for i in range(1,11):

 for j in range(1,11):

 print("%3d"%(i*j),end=' ')

 print("")

OUTPUT:

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

 10 20 30 40 50 60 70 80 90 100

Python Programming Simplified

133

The body of the first for loop (outer) contains three statements. The inner for loop’s body has got only

one statement. Initially i is 1 and condition i<=10 in the outer loop is true . First statement inside outer

for loop is inner for loop which initializes j=1 . Now this for loop runs for 1 to 10 for value of i=1 .

When this loop terminates on reaching a value of j=11, control is transferred to third statement

print(“”); which leaves a line on the output screen. Now control is transferred to outer loop which

increments value of j by 1 which becomes 2 .The process repeats with value of j from 1 to 10 for value

of i=2 , till i<=10 remains true. .

Script 4.31 to print the following pattern, input is number # of lines

1

2 2

3 3 3

4 4 4 4

line=int(input("Enter the number of lines\n"))

print("The pattern is ")

for row in range(1,line+1):

 for col in range(1,row+1):

 print(row,end=' ')

 print("")

OUTPUT:

Enter the number of lines

5

The pattern is

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

We have used two for loops in the program. One is to control the number of rows and second to control

number of cols. Initially assume line=5 so outer for loop runs four times. In the first run row=1 and

inner loop runs only once. The print("") statement is within the inner for loop so this leaves new line

after printing 1.When control reaches second time inside outer for loop value of row is 2,inner loop

starts again by setting the value of col=1,this time inner loop runs twice printing the value of row

which is 2 twice. This continues till row<=5.

Script 4.32 to print the following pattern, input is #number of lines

Python Programming Simplified

134

A

B B

C C C

D D D D

ch='A'

line=int(input("Enter the number of lines\n"))

print("The pattern is ")

for row in range(1,line+1):

 for col in range(1,row+1):

 print(ch,end=' ')

 ch=chr(ord(ch)+1)

 print("")

OUTPUT:

Enter the number of lines

5

The pattern is

A

B B

C C C

D D D D

E E E E E

For the first run of outer for loop ch=’A’ . When first iteration of inner for loop finishes value of ch is

incremented by 1 and becomes B. As we have to print one A on first row, two B on second row and so

on. We increment ch at the end of every iteration of outer for loop. For incrementing character ch we

first need to convert into its ASCII representation using ord function then after incrementing convert

back to character using chr function.

Script 4.33 to print the following pattern, input is #number of lines

1

1 2

1 2 3

1 2 3 4

line=int(input("Enter the number of lines\n"))

print("The pattern is ")

Python Programming Simplified

135

for row in range(1,line+1):

 for col in range(1,row+1):

 print(col,end=' ')

 print("")

OUTPUT:

Enter the number of lines

5

The pattern is

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

This script is similar to earlier ones but instead of printing the value of row we have printed the value

of col to get the desired output.

Script 4.34 to print the following pattern,input is number #of lines

1

2 3

4 5 6

7 8 9 10

value=0

line=int(input("Enter the number of lines\n"))

print("The pattern is")

for row in range(1,line+1):

 for col in range(1,row+1):

 value=value+1

 print(value,end=' ')

 print("")

OUTPUT:

Enter the number of lines

4

The pattern is

1

Python Programming Simplified

136

2 3

4 5 6

7 8 9 10

The value of value variable is incremented in every iteration of inner for loop which is printed through

print. Thus we get the desired output. As number of lines grows more than 4 display of two digit

numbers will not be properly aligned. For that you can make use of print(‘%3d’%value,end=’ ‘) as a

replacement option in second line of inner for loop. Give it a try!.

Script 4.35 to print the following pattern, input is number #of lines

1

22

333

4444

line=int(input("Enter the number of lines\n"))

print("The pattern is ")

for row in range(1,line+1):

 for space in range(1,line-row+1):

 print(end=' ')

 for col in range(1,row+1):

 print(row,end='')

 print("")

OUTPUT:

Enter the number of lines

4

The pattern is

 1

 22

 333

 4444

To get the above output note before printing 1 we have to leave 3 spaces (line-row). Similarly, 2 spaces

for 2, 1 space for printing b and no space for printing 4. This has been achieved by inserting one more

for loop between outer and inner for loop. Prior to printing the values, we leave the spaces through this

for loop. Note the print statement in the second inner loop has just opening and closing single quotes in

the end argument with no space in between. If you give a space in end argument as:
print(row,end=’ ‘)

The output will become:

Python Programming Simplified

137

 1

 2 2

 3 3 3

 4 4 4 4

And instead of printing row as argument in the above print with space in end,we print ‘*’ then output

will be:

 *

 * *

 * * *

 * * * *

Script 4.36 to print the following pattern, input is number of lines

 *

 * *

 * * *

 * * * *

 * * *

 * *

 *

line=int(input("Enter the number of lines\n"))

print("The pattern is ")

First half of pyramid

for row in range(1,line+1):

 for space in range(1,line-row+1):

 print(end=' ')

 for col in range(1,row+1):

 print('*',end=' ')

 print("")

second half of pyramid

for row in range(line,0,-1):

 for space in range(line-row,0,-1):

 print(end=' ')

Python Programming Simplified

138

 for col in range(row,0,-1):

 if(row==line):

 continue

 print('*',end=' ')

 if(row==line):

 continue

 print("")

OUTPUT:

Enter the number of lines

4

The pattern is

 *

 * *

 * * *

* * * *

 * * *

 * *

 *

The first block of for loop prints asterisk in descending order and second block of for loop prints them

in ascending order. Note the two statements

 if(row==line)

 continue;

ensures that when second block of for loop executes we don’t get repeat pattern of line no of

asterisk in the first iteration of outer for loop.

4.7 The pass statement

The pass statement is used as null statement in python. A null statement does nothing but its presence

in loop ensures that code may be repeated for a fix number of time but it will not execute any

statement. It can also be used to make a body as empty in loops,classes etc.

In this section we use pass statement within loops to create delay in execution. Lets see an example:

for i in range(1,11):

 for j in range(10000000):

 pass

 print("Hello ",i)

OUTPUT:

Hello 1

Hello 2

Hello 3

Python Programming Simplified

139

Hello 4

Hello 5

Hello 6

Hello 7

Hello 8

Hello 9

Hello 10

The inner for loop runs for 107 times but does nothing due to pass statement. The pass statement is the

body of inner loop. It means the print statement that is part of outer for loop executes once inner loop

finishes. This cause a delay in printing.

4.8 Ponderable Points

1. Python supports while and for loop.

2. The while loop is general purpose loop but for loop is specially used with sequences or

collections.

3. A null statement is represented by a pass statement.

4. Null statements are useful to create time delay.

5. The break keyword causes to come out from loop immediately.

6. The continue statement skips the current iteration and start from new iteration.

7. Nesting of both while and for loop can be easily done.

8. The range object allows us to create different types of ranges but it must be used inside list

constructor for generation of list.

Python Programming Simplified

140

5. Functions

5.1 Introduction

A function is a self-contained block of code written once for a specific purpose but can be used again

and again. A function is a basic entity for python programming language. They are the basic building

blocks for modular/procedural programming. Function allow us to organize our code into small

manageable blocks that are written and combined to make a big code. Another modular approach other

than functions is class and modules. Functions help us to reuse the code that have been written once

instead of repeating same set of code multiple times.

There are number of functions which we have used so far like print, input, int, float, bin, oct, hex, len

etc. All these functions are library functions or built-in functions i.e. they are already there in the

python programming language and we can use them in our programs. All of these functions belong to

some module (modules are discussed in chapter 10). For example the default module imported is

builtins to which print and input functions are part of.

We can simply use the built-in functions in our program, but we cannot modify them as their code is

not available to the programmer. Some of the modules are written in C and they are part of python

interpreter, so you cannot see the code of those modules like math or sys module. The others are in in

the form python files (.py extensions).

Functions are first-class objects in Python, which means the function names can be assigned to another

variable, and they can be used as elements of a list or in the dictionary. It also means that you can use

functions as arguments to other functions, store functions as dictionary values, or return a function from

another function. This allows to use functions in more meaningful and powerful ways in number of

programming situations.

We can write our own functions depending upon requirements and all those functions will be called

user-defined functions.

5.2 The Function Syntax

def functioname(argument(s)):

 ‘’’

 description of what function

 does

 ‘’’

statement(s)

 return statement (optional)

The def keyword is used to create a function in Python. Following def keyword we have the

functioname which can be any name which follows the rules of writing identifiers. The function may or

Python Programming Simplified

141

may not take any arguments. If no arguments are there we just write () (opening and closing

parenthesis) which is exactly called the function symbol. If arguments are present they are written

inside parenthesis separated by comma. The colon after the right parenthesis start function as a block

and all statements are written as body of the function. All these statements must be indented either by 4

spaces or by tab but not a mix of both. If you want to return some value from function than return

statement can be used.

For every function python let you create a documentation string where within triple double quotes or

triple single quotes you can write a description of function. This may include what the function does

and its parameters or how to use the function.

5.3 Examples of function

Let’s see our first example of function in python

def fun():

 """

 My first function for demo purpose

 """

 print("First function in python")

fun()

print(fun.__doc__)

OUTPUT:

First function in python

 My first function for demo purpose

In the above fun is the function name function does not take any arguments. Whenever you have ()

after any name then that is a function. Obviously you may have arguments within (). The string written

within triple double quotes is the doc string for function fun and it can be accessed outside the function

by the function attribute __doc__. The documentation string is ignored by the python interpreter.

Actual working of the function is done by the definition /body of the function which is just one print

statement:

print("First function in python")

The next line is not indented with fun function. Writing just fun() means we are calling the function

fun (). Whenever fun() statement is encountered then control is transferred to the body of the function

and all the statements written within the body of the function gets executed. When last statement of the

function body is executed than function return to the next statement after from where the function was

called. In this case it is

print(fun.__doc__)

In python every function will be called from some other function. Assume default function present is

main function (Kind of hidden and will be discussed during module) where you write all your python

code. Here we have called fun() from within main(). So main() is called calling function and fun() is

called called / callee function.

Python Programming Simplified

142

Let’s have another example with a small change from previous one.

def fun():

 """

 Demo function fun

 """

 print("demo function fun")

print("In default main")

fun()

print("Back in default main")

As the program executes controls goes to print which prints In default main on the screen. Then when

fun() is encountered control is transferred to the definition of fun() and executes all the statements

within its body, here it prints demo function fun .As stated in the previous explanation that whenever a

function returns it goes back to the next statement after from where it was called and here the next

statement is print which displays Back in default main on to the screen and program terminates.

5.4 Illustrative Examples

Script 5.1 working with two functions

def fun():

 """

 Demo function fun

 """

 print("In function fun")

def show():

 """

 Demo function show

 """

 print("In function show")

print("In default main")

print("calling function fun")

fun()

print("calling function show")

show()

print("Back in default main")

OUTPUT:

In default main

Python Programming Simplified

143

calling function fun

In function fun

calling function show

In function show

Back in default main

Here we are working with two functions. As clear from the output initially first two print statement in

our default main() function is executed then fun() is called and print within fun() is executed . When

fun() returns it returns to print statement within default main function that displays ‘calling function

show;. The call show() calls show function and print within show() is executed. When show() is

returned last print statement in default main() executes and program terminates.

For brevity, the doc string is omitted in all the functions presented next.

Script 5.2 working with three functions

def fun1():

 print("In function fun1")

def fun2():

 print("In function fun2")

def fun3():

 print("In function fun3")

print("In default main")

fun1()

fun2()

fun3()

print("Back in default main")

OUTPUT:

In default main

In function fun1

In function fun2

In function fun3

Back in default main

Not much is there to explain in this program. We have three functions which are called one by one.

Script 5.3 Nesting of functions

def fun2():

 print("In fun2 function, called from fun1")

 print("Returning from fun2")

def fun1():

Python Programming Simplified

144

 print("In fun1 function")

 print("Going in fun2")

 fun2()

 print("Back in fun1,going back to main")

print("In main")

print("Going in function 1")

fun1()

print("Back in main")

OUTPUT:

In main

Going in function 1

In fun1 function

Going in fun2

In fun2 function, called from fun1

Returning from fun2

Back in fun1,going back to main

Back in main

In this program we have called fun1() from default main() and inside fun1() we have called fun2().

When fun2() returns control returns to the next print statement following which fun1() returns.

I think at this stage you must have understood the basic idea of functions which does not take any

argument and which does not return any value. Now we turn our attention towards functions which

accept parameters but does not return any value.

5.5 Passing parameters to functions

The general syntax of this type of functions is as follows:

def function_name (arg1,arg2,):

 doc string

 statement(s)

Basic idea of syntax of function we have covered earlier. In this section we see function codes where

parameters are passed to the functions, but no value is returned from function. Let’s see some

illustrative examples.

Script 5.4 display of single integer through function

def show(a):

print("U entered = ", a)

x=int(input("Enter a number\n"))

show(x)

Python Programming Simplified

145

OUTPUT:

Enter a number

34

U entered = 34

The function show accepts just one parameter x that can be anything: integer, float, string, list,

dictionary etc. but here we have taken an integer from user and stored in x in default main function. The

same x is passed to show function during a call as show(x). This gets collected in a and print statement

inside function executes. When we call the function we pass an integer value as(though any type value

can be passed) shown by statement show(x). Here we are calling the function show and passing a as

argument. This is known as call by value as we are calling the function and passing value of the

variable x. The x value sent must be collected in some variable in the function definition. We collect

this value in variable a. Note that number of arguments must match when defining the function.

Variable x in function main is called actual argument and variable a in function show is called

formal argument. When we pass x to function show a copy of x is sent which is collected in a. In the

function show we simply print the value of a.

Let’s modify the above code little bit as:

def show(a):

 print("a in show = ", a)

 a=a+10

x=10

show(x)

print("x in main=",x)

In the show after printing a we have incremented it by 10. When function returns we print the value of

x in the main . The value of x remains same as it was prior to sending to function show. Any change

performed on the formal parameter does not reflect back in the actual parameters when functions

are called by value i.e. when value of actual parameters is send to the functions.

Script 5.5 Function with two arguments

def show(name,age):

 print("Hello ",name," you are",age,"years old")

show('Ajay',15)

OUTPUT:

Hello Ajay you are 15 years old

The show function takes two arguments: name and age. As python is dynamic type language so

anything can be passed to function show during the call. Here during call we have just passed a string

‘Ajay’ and 15 as integer data. In the body of the show function the print statement executes and

Python Programming Simplified

146

displays:

Hello Ajay you are 15 years old

Script 5.6 sum of two float numbers using function

def sum(x,y):

t=x+y

print("Sum=",t)

a=float(input('Enter first number\n'))

b=float(input('Enter second number\n'))

sum(a, b)

OUTPUT:

Enter first number

1.4

Enter second number

5.6

Sum= 7.0

We input two numbers in a and b from user and pass the same to function sum. The function sum takes

two parameters and finds their sum. The actual argument a and b are collected in formal argument x

and y. Inside sum we declare a local variable t and store the sum x+y in t . In the end we display sum

thorough print.

The definition may be written using small number of statements as

 def sum(x,y):

 print("Sum=",x+y)

Script 5.7 max of two float numbers using function

def max(a,b):

 m=a if a>b else b

print("max=",m)

a=float(input('Enter first number\n'))

b=float(input('Enter second number\n'))

max(a, b)

OUTPUT:

Enter first number

23

Enter second number

Python Programming Simplified

147

45

max= 45.0

In the program we are finding max of two numbers using function. We accept two numbers from user

and pass to the function. In the function body we have found out maximum using simple if else and

stored the same in max which is displayed through print.

One limitation of the above code is that it does not check equality of two numbers. See the next script

that removes this limitation.

Script 5.8 Maximum of two numbers with equality option

def max(a,b):

 if a==b:

 print("both are equal")

 elif a>b:

 print("max=",a)

 else:

 print("max=",b)

a=float(input('Enter first number\n'))

b=float(input('Enter second number\n'))

max(a, b)

OUTPUT:

Enter first number

23

Enter second number

24

max= 24.0

The code is easy to understand where we have else-if ladder inside function for finding maximum of

two numbers along with checking equality of two numbers.

Script 5.9 sum and average of three numbers

def sumavg(a,b,c):

s=a+b+c

avg=s/3

 print("Sum=",s)

print("Average=%6.2f"%avg)

x,y,z=input('Enter three numbers separated by space\n').split()

x=float(x);y=float(y);z=float(z);

sumavg(x,y,z)

OUTPUT:

Python Programming Simplified

148

Enter three numbers separated by space

34 51 12

Sum= 97.0

Average= 32.33

The function sumavg finds sum and average of three numbers passed. The program is self-explanatory.

Script 5.10 To check number is even or odd using function

def evenodd(num):

 s="odd" if num%2 else "even"

print(num," is",s)

n=int(input("Enter an integer number\n"))

evenodd(n)

OUTPUT:

Enter an integer number

23

23 is odd

We input an integer number from user and pass it to function evenodd which checks whether number is

even or odd. If remainder by 2 is 0 then number is even else number is false. If number is odd then odd

is assigned to s else even is assigned to s. The function can be used anywhere we want to check number

is even/odd.

Script 5.11 Display decorated name using function

def decorate(name):

 l=len(name)+7+1

 line = '+' + '-'*l + '+'

 print(line)

 name="|Welcome "+name+"|"

 print(name)

 print(line)

name=input('Enter your name\n')

decorate(name)

OUTPUT:

Enter your name

Juhi Jain

+-----------------+

Python Programming Simplified

149

|Welcome Juhi Jain|

+-----------------+

The function decorate accepts just one parameter: the name to be decorated. Inside the function we

find the length of the name using len function and add 8 to it (length of Welcome is 7 and 1 space for

separating Welcome and name. The line variable stores the fancy line to be displayed over top and

bottom of the new string. The name is now modified by concatenating |Welcome before the name and

adding | at the end. The resultant name and line are then displayed.

Script 5.12 To find Greatest Common Divisor of two numbers

def gcd(a,b):

 while b:

 a,b=b,a%b

print("GCD=",a)

x,y=input("Enter two numbers\n").split()

x=int(x);y=int(y)

gcd(x,y)

OUTPUT:

Enter two numbers

99 78

GCD= 3

The greatest common divisor of two numbers can easily be find out using Euclid algorithm. The

algorithm is :

 EUCLID(a,b)

1. While b!=0

2. t=a

3. a=b

4. b=t%a

5. gcd is a

Here the code is shortened using parallel assignment. The code works for as for input:99 78

a b

99 78

78 99%78=21

21 78%21=15

15 21%15=6

Python Programming Simplified

150

6 15%6=3

3 6%3=0

5.6 Function with parameters and return type

The general syntax of this category of this type of functions is as follows:

 def function_name (data_type arg,): {

 doc string

 Statement(s)

 return value

Here return is the keyword and value can be any type of value that is returned by the function. Lets see

number of examples to understand this category of functions.

 # Script 5.13 compute square of function and return using function

def sqr(n):

 """

 function returns square of n

 input:n

 output:n*n

 """

 s=n*n

 return s

num=int(input("Enter a number\n"))

sn=sqr(num)

print("Square of",num,"is=",sn)

OUTPUT:

Enter a number

5

Square of 5 is= 25

In the definition/body of the function we calculate n*n into s and return the value of s through

statement return s. When this happens the s returns at the place from where the function sqr was called

so the statement sn=sqr(num) becomes sn=s. If value of n happens to be 5, s will have 25 when it

returns and the same will be assigned to sn. The definition of function can be modified as:

 def sqr(n):

Python Programming Simplified

151

 return n*n

In these types of functions the documentation string is quite helpful where you can clearly state what

the function is doing , what is input and what the function returns. You can write this in any function

which you think will help the user who wants to get information regarding functioning of the function.

Writing this in main function : print(sqr.__doc__) gives the following output:

 function returns square of n

 input:n

 output:n*n

Script 5.14 Area of circle using function

def area(r):

 return 3.14*r**2

num=float(input("Enter the radius\n"))

ans=area(num)

print("Area of circle=",ans)

OUTPUT:

Enter the radius

2

Area of circle= 12.56

The function area takes just one argument r which represents radius of the circle. Inside the function

we pass the radius of float type which we input from user in the main. The function calculates the area

of the circle and return the area from the function which is collected in the variable ans in the main.

The same is then displayed .

Script 5.15 Maximum of two numbers using function

def max(a,b):

return a if a>b else b

a,b=input("Enter two numbers separated by space\n").split()

a=float(a);b=float(b);

m=max(a,b)

print("Maximum=",m)

OUTPUT:

Enter two numbers separated by space

4.5 6.7

Maximum= 6.7

The program is quite simple. It finds max of two number using function max which accepts two

Python Programming Simplified

152

arguments of type float and return maximum of the two passed variables. The advantage of returning

value from function is that it can be used as a placeholder in other or same function. Let’s see an

example in below script.

Script 5.16 Maximum of three numbers from a function which find maximum

of two # numbers

def max(a,b):

return a if a>b else b

a,b,c=input("Enter three numbers separated by space\n").split()

a=float(a);b=float(b);c=float(c)

m=max(max(a,b),c)

print("Maximum=",m)

OUTPUT:

Enter three numbers separated by space

1.2 4.5 3.2

Maximum= 4.5

In the expression m=max (max(a,b),c) first max (a,b) is called and when this returns the call max(a,

b) is replaced by the maximum of two either a or b say t (assume). Then again function max is called

which returns max of t and c. Note how we have calculated maximum of three numbers with a function

which finds maximum of two number only. The function can also be called as: m=max(a,max(b,c))

On the similar basis you can calculate max of 4 numbers by writing

m=max(max(a,b),max(c,d)) .

Script 5.17 To find factorial of a given number using function

def fact(num):

 if num<1:

 return 1

 else:

 f=1

 for i in range(1,num+1):

 f=f*i

 return f

n=int(input("Enter an integer number\n"))

ans=fact(n)

print("Factorial of ",n,"is=",ans)

OUTPUT:

Enter an integer number

10

Python Programming Simplified

153

Factorial of 10 is= 3628800

The logic for finding factorial was explained in the chapter 4. Here we have put whole of the logic in

the function fact. In the function we pass the number whose factorial is to be finding out. The function

calculates the factorial and returns the factorial of the number.

Script 5.18 to check whether given number is prime or not using function

def prime(n):

 c=2

 flag=True

 while c<=n//2:

 if n%c==0:

 flag=False

 break

 c=c+1

 return flag

num=int(input("Enter the number\n"))

print(num,"is prime") if prime(num) else print(num,"is not prime")

OUTPUT:

Enter the number

23

23 is prime

The number to be checked for prime is passed to function prime which checks whether number is

prime or not. If it is prime then flag which is returned contains True and if it is not then flag returns

False. In the main using simple if-else this returned value is checked and received in f and depending

upon 0 or 1 we display appropriate output on to the screen..

Script 5.19 To find reverse of a given number using function

def reverse(n):

 rev=0

 while n!=0:

 r=n%10

 rev=rev*10+r

 n=n//10

 return rev

num=int(input("Enter the number\n"))

ans=reverse(num)

Python Programming Simplified

154

print("Reverse Number is ",ans)

OUTPUT:

Enter the number

23456

Reverse number is 65432

The logic to find reverse of a number has been given in chapter 4. The same is presented over here but

within function. We simply pass the number and the function return the reverse of the number.

Script 5.20 To check whether a given number is +ve ,-ve or zero

using function

def status(n):

 if n>0:

 return "Positive"

 elif n<0:

 return "Negative"

 else:

 return "Zero"

num=int(input("Enter any number\n"))

print("Number is ",status(num))

OUTPUT:

Enter any number

45

Number is Positive

In the function status we return ‘Positive’, ‘Negative’ or ‘Zero’ if the number happens to be positive,

negative or zero respectively. This returned value is directly printed in the print statement.

5.7 The default return type

When function does not return any value and yet you use the function as if it is returning a value then

default value None is returned. See the code given below:

def sum(a,b):

print("sum=",a+b)

x=sum(10,20)

print(x)

OUTPUT:

Python Programming Simplified

155

Sum=30

None

Here the function sum is performing sum of a and b and displaying only without returning the sum . In

the main you are storing the return value in x though sum function is not returning any value. But here

the function sum returns a value None which is stored in x and gets printed. The other way to call the

sum function is:

print("Sum",sum(10,20))

In this case output will be:

sum= 30

Sum None

The same thing you can also try in Python shell

>>> def sum(a,b):

... print(a+b)

...

>>> x=sum(3,4)

7

>>> x

>>> print(x)

None

Note here directly seeing the value of x shows you nothing. You have to use print statement to see the

value None stored in x.

5.8 Function with default arguments

In Python it is possible for a function not to specify all its arguments. Some of the arguments may be

specified as default values . When a function having default argument is called, python checks for the

number of argument as well as checks which arguments are default. If the argument was default and

was not specified during function call, default value of that argument is assumed. In case we provide a

new value, default argument is overridden. For example

 def show(x, y=20):

 statement(s)

The function show takes two arguments, out of which second argument from left is default. In case

function is called as show(10) , default value of y i.e. 20 is assumed. If function is called as

show(10,100) than default value of y i.e. 20 is overridden.

In a function with default argument, if one argument is default, all successive arguments must be

default. We cannot provide default values in the middle of the arguments or towards left side. We

provide few examples:

Python Programming Simplified

156

1. def fun(x, y=20,z=35):

function body

2. def fun(x, y=30,z):

function body

3. def fun(x=45,y):

function body

Out of three examples given only 1 is valid and 2 and 3 are invalid. In the 2 middle argument is default

and the next argument z is not default. In the 3 first argument is default and next argument is not

default.

See some examples given below:

Script 5.21 Demo of function with default arguments

def show(y=10):

print("Function argument=",y)

print("Called show with argument 20")

show(20)

print("Called show without argument")

show()

OUTPUT:

Called show with argument 20

Function argument= 20

Called show without argument

Function argument= 10

The function show takes just one argument which is a default argument. In the function call show(20),

the default argument is overridden and y takes the value 20. In the function call show() as no argument

was specified , the compiler assumes default value 10 for y.

In the above example we have called the function with an integer value. The function can be called with

any other value like:

show("Hello")

show(23.45)

show(True)

show('A')

show([2,3,4])

Script 5.22 Demo of function with two default arguments

def show(x,y=10):

Python Programming Simplified

157

print("Function arguments=",x,"and ",y)

show("Hello")

show(23.45,234)

show(True,False)

OUTPUT:

Function arguments= Hello and 10

Function arguments= 23.45 and 234

Function arguments= True and False

 In the function call show(“Hello”), “Hello” is passed to x and y takes default value 10. In the

function call show(23.45,234) x takes value 23.45 and default parameter is overridden so y takes value

234. Similar kind of explanation applies to show(True,False).

Script 5.23 Demo of function with three default arguments

def show(x=10,y=20,z="Hello"):

print("Function arguments=",x,",",y,"and",z)

show("First")

show(23.45,234)

show("First","Second","Third")

show()

OUTPUT:

Function arguments= First , 20 and Hello

Function arguments= 23.45 , 234 and Hello

Function arguments= First , Second and Third

Function arguments= 10 , 20 and Hello

In the function show all three parameters are default. In the function call show(First) , first default

argument is overridden and other two default are used. Next function call show(23.45,234) overrides

first two default arguments and third default argument is used. The last call show() uses all default

arguments.

Script 5.24 Demo of function with default arguments, finding bonus for

an employee

def incr(sal,bonus_pr=10):

 sal = sal*(1+ bonus_pr/100)

 return sal

salary=float(input("Enter the salary\n"))

if salary>=10000:

Python Programming Simplified

158

 newsalary=incr(salary,15)

else:

 newsalary=incr(salary)

print("Salary =",salary)

print("Bonus=%7.2f"%(newsalary-salary))

print("Gross Salary=%7.2f"%newsalary)

OUTPUT:

(First Run)

Enter the salary

8000

Salary = 8000.0

Bonus= 800.00

Gross Salary=8800.00

(Second Run)

Enter the salary

12000

Salary = 12000.0

Bonus=1800.00

Gross Salary=13800.00

The function incr finds the new salary after adding bonus to the original salary. If salary is <10000 we

provide a bonus of 10% of sal else we provide bonus of 15% of salary. The incremented salary is

returned. The code does not check when entered salary is negative.

Script 5.25 To find simple interest using function with default arguments

def SI(p,rate=8.5,time=1):

 si=p*rate*time/100

 return si

si=SI(1000)

print("Simple Interest=",si)

si=SI(1000,9.5)

print("Simple Interest=",si)

si=SI(1000,10.5,4)

print("Simple Interest=",si)

OUTPUT:

Simple Interest= 85.0

Python Programming Simplified

159

Simple Interest= 95.0

Simple Interest= 420.0

The function SI calculates simple interest for given principal,rate and time. Default values of time and

rate are 1 and 8.5 respectively. In the main we call the function SI 3 times with 1, 2 and 3 arguments.

Rest is easy to understand.

5.9 Call by name

In general, when we call the function the parameters are passed from left to right. That’s why we had

the restriction that when one argument is default all other must be default or it must be the right most

argument. But when we know what the names of various parameter the function is having, we can call

the function by name by passing parameters with name in any order. Let’s understand by an example:

def SI(p,rate=8.5,time=1):

 return p*rate*time/100

print("Simple Interest=",SI(p=1000))

print("Simple Interest=",SI(time=2,p=5000,rate=5))

print("Simple Interest=",SI(rate=9.5,p=2000,time=2))

OUTPUT:

Simple Interest= 85.0

Simple Interest= 500.0

Simple Interest= 380.0

Note the order of parameters in the second and third call to function SI, as we are passing parameters

by name we can select any order. For example, we have passed time as first parameter, p as second and

rate as third parameter in the function call to SI.

Its not necessary to have default arguments when passing parameters by name. See one more simple

example:

def personinfo(name,age,sex):

 if sex=='Male':

 print("Hello Mr",name,"You are",age,"years old")

 else:

 print("Hello Ms",name,"You are",age,"years old")

personinfo(age=21,name='Tarun',sex='Male')

personinfo(sex='Female',name='Bani',age=19)

OUTPUT:

Python Programming Simplified

160

Hello Mr Tarun You are 21 years old

Hello Ms Bani You are 19 years old

The code is easy to understand.

5.10 Returning more than one value

In all earlier examples of functions where function returns a value, it returned only one value. But in

python the function can return more than one value. Just separate the returned values by comma and

during call save all returned values in equal number of variables. See one example:

def mfun(a,b):

return a+b,a-b,a*b,a/b,a**b

s,su,m,d,p=mfun(3,7)

print(s,su,m,round(d,3),p)

OUTPUT:

10 -4 21 0.429 2187

The function mfun performs addition, subtraction, multiplication, division and power operation of two

numbers a and b and returns the resultant values. The same is stored in variables s,su,m,d,p

respectively. The round function is used to display result upto 3 places after decimal point.

In reality, only value is returned in the form of a tuple but these values are unwrapped in equal number

of variables on the left hand side. Lets rewrite the previous code as:

def mfun(a,b):

return a+b,a-b,a*b,a/b,a**b

ans=mfun(3,7)

print(ans)

OUTPUT:

(10, -4, 21, 0.42857142857142855, 2187)

If you want you can have access to the above tuple elements as ans[0],ans[1] upto ans[4] or using for

loop you can traverse them:

for a in ans:

 print(a,end=' ')

Other than using the tuple way to return the multiple values from function, you can make use of list and

dictionary also. Though they are covered in the coming chapters, but we present examples here as you

won’t find them difficult to understand.

List version

Python Programming Simplified

161

def mfun(a,b):

return [a+b,a-b,a*b,a/b,a**b]

ans=mfun(3,7)

for a in ans:

 print(a,end=' ')

#Dictionary Version

def mfun(a,b):

 d=dict()

 d[0]=a+b;d[1]=a-b

 d[2]=a*b;d[3]=a/b

 d[4]=a**b

return d

ans=mfun(3,7)

for k in ans.keys():

 print(ans[k],end=' ')

List version is easy to understand. In dictionary version for every key we assign the items. For key 0 ,

value a+b is assigned, for key 1 , value is a-b and so on. The returned dictionary is stored in ans. For

every key k belongs to {0,1,2,3,4} which is returned by ans.keys(), value is displayed by writing

ans[k].

5.11 Global variables in functions

All variables that are defined within functions as we have seen in earlier programs in this chapter are

local variables. These variables have their scope limited to functions in which they were defined. They

cannot be used outside the function. The variables which are defined in main are global and they can be

used in any function. The keyword global is useful in these situations. Let’s understand using some

examples:

x = 10

def func1():

return x*x

def func2():

return x**2

print(func1())

print(func2())

print(x)

Python Programming Simplified

162

OUTPUT:

100

100

10

The variable x is global and is used in both the functions func1 and func2 . Both work on the global

variable x but do not modify them. That’s why the print statement prints the original value 10 of x.

Let’s modify the value now in the next code.

x = 10

def func1():

x=20

def func2():

x=30

print(func1())

print(func2())

print(x)

OUTPUT:

None

None

10

Both the functions are not returning the values, so None is returned and last print statement prints 10.

The global x was not modified at all. This is because x defined in both the functions is treated as local

and not global. To use the global variable inside a function you have to declare the global variable

inside the function as:

global globalvariablename

Let’s modify the above code now and see the result:

x = 10

def func1():

 global x

x=20

def func2():

 global x

x=30

print(func1())

print(func2())

print(x)

OUTPUT:

Python Programming Simplified

163

None

None

30

This time we get the results as expected. First the global x was modified in func1 to value 20 and same

was modified to 30 in func2. Again with a little change in code:

x = 10

def func1():

 global x

x=x+10

def func2():

 global x

x=x+20

func1()

func2()

print(x)

OUTPUT:

40

The first function modifies global x to 20 and same is modified by func2 to 40. When we print x in the

main we get the last value of x which was modified by func2.

What if we want to use both the local and global variable together in function. See one example:

x = "global"

def func1():

 y="local in func1"

 print(y)

 global x

 x=x+y

def func2():

 y="local in func2"

 print(y)

 global x

x=x+y

func1()

func2()

print(x)

Python Programming Simplified

164

OUTPUT:

local in func1

local in func2

globallocal in func1local in func2

In the code above we have two local variables y in each of the function func1 and func2. The global

variable x is modified in both the functions. In the main the function func1 is called first. This gives

output:

local in func1

and sets x to the value globallocal in func1. When func2 is called in main it prints

local in func2

and x now becomes globallocal in func1local in fun2. Here the global x which was

modified by func2 is used in main.

But what if we want to keep local and global variable by the same name. Let’s see the next code:

x = "global"

def func1():

 x="func1 local"

 print(x)

 global x

 x="global in func1"

def func2():

 x="func2 local"

 print(x)

 global x

x="global in func2"

func1()

func2()

print(x)

OUTPUT:

Syntax Error: name 'x' is used prior to global declaration:

The above code generates error as python does not allow to use global and local variable having same

name and to be used at the same time. But there is a way around. Luckily python provides a global

dictionary in the form of symbol table that keeps values of all global variables used within a single

python file. This is used as : globals ()[‘globalvariablename’].

See one small example:

x='global'

def fun():

Python Programming Simplified

165

 x='local'

 print(x)

 print(globals()['x'])

 globals()['x']='modified global'

fun()

print(x)

OUTPUT:

local

global

modified global

As discussed above to access the value of global variable x within a function having a local variable x

we can make use of globals dictionary. In the function fun we can easily use a local x and global x by

writing globals()[‘x’].

One final example before we wrap up this section:

x = "global"

def func1():

 x="local in func1"

 print(x)

 globals()['x']="In func1" + globals()['x']+"\n"

def func2():

 x="local in func2"

 print(x)

 globals()['x']="In func2 " + globals()['x']+"\n"

func1()

func2()

print(x)

OUTPUT:

local in func1

local in func2

In func2 In func1global

Try to figure out how the output has come?

5.12 Passing function as argument

A function can also be passed as an argument in another function. The reason behind that a function can

easily be given a new name and when passed into another function during function call , it can be

Python Programming Simplified

166

collected into function formal parameters. It is because functions are first class objects in python just

like integer, float, list, strings etc. Let’s see a small example of function assignment in shell:

>>> def fun():

... print("Hello")

...

>>> fun()

Hello

>>> x=fun

>>> x()

Hello

>>> y=fun

>>> y()

Hello

>>> L=[x,y,fun]

>>> for func in L:

... func()

...

Hello

Hello

Hello

When you write x=fun, it means creating new name for the function.In other words you are creating

alias for the function. Writing simply function name without () represents function address in memory.

For example:

>>> x

<function fun at 0x000001AEE30C1EA0>

>>> y

<function fun at 0x000001AEE30C1EA0>

>>> fun

<function fun at 0x000001AEE30C1EA0>

Once an alias has been created for the function, the function can be called by that new name. Even

function addresses can be stored in list and processed using for loop.

def sum(a,b):

 return a+b

def sub(a,b):

Python Programming Simplified

167

 return a-b

def mul(a,b):

 return a*b

L=[sum,sub,mul]

for fun in L:

 print(fun(10,20))

OUTPUT:

30

-10

200

In each iteration of for loop fun represents function sum(10,20), sub(10,20) and mul(10,20). It is

obvious that number of arguments must be same in all functions stored as elements in the list L.

As you have got an idea now that function can be assigned and processed as if it is a simple data type,

let’s move our attention towards passing function as argument to functions. We will understand this

using an example:

def mul(a,b):

return a*b

def po(a,b):

return a**b

def fun(a,b,f):

return f(a,b)

print("Multiplication=",fun(2,3,mul))

print("Power=",fun(3,4,po))

OUTPUT:

Multiplication= 6

Power= 81

The function fun takes three arguments: first two here we are passing integers and last one is a function

itself. In call fun(2,3,mul), the reference of mul is stored in f and in the body when it executes f(2,3)

internally it calls function mul(2,3). Similar kind of arguments are applied to fun(3,4,po). See how

easy it is to pass function as argument to other functions.

5.13 Passing variable arguments to functions

Python Programming Simplified

168

Python has a special feature which allow us to pass variable number of arguments to functions. That

feature is known as passing parameters with asterisk. A python function having single parameter with

asterisk (*) as prefix can accept variable number of arguments. The parameter name serve as a tuple

with variable number and types of arguments. The arguments cannot be keyword arguments as we will

see in a short while. Let’s see an example to understand this:

def demo(*args):

 for arg in args:

 print(arg,end=',')

print()

demo(10)

demo(10,"Hello")

demo(True,"Python",123)

demo([1,2],2.34,False,"Last")

OUTPUT:

10,

10, Hello,

True, Python,123,

[1, 2],2.34, False, Last,

The function demo takes variable number of arguments (even zero) in the form of a tuple. For each

argument in the tuple args we simply display it separated by comma. For leaving a new line between

each function call we have used print() after for loop. In the main the demo function has been called

with 1,2,3 and 4 arguments. The function even be called as: demo().

As said above the arguments passed in the form of a tuple. Let’s verify this:

def demo(*args):

 print(type(args))

demo(True,"Python",123)

OUTPUT:

<class 'tuple'>

Let’s take some more examples of variable number of arguments to functions.

def fun(*args):

 sum=0

 for x in args:

 sum=sum+x

 print("Sum of",args,"=",sum)

fun(10)

fun(10,20)

Python Programming Simplified

169

fun(12,3.4,56,7.8)

OUTPUT:

Sum of (10,) = 10

Sum of (10, 20) = 30

Sum of (12, 3.4, 56, 7.8) = 79.2

The code is easy to understand. We are just summing variable number of arguments passed to

functions.

In addition to passing variable number of arguments to functions if you want to pass some fixed

number of arguments, you can do that too. Let’s see an example:

def fun(first, *args):

 print("First argument=",first)

 print("Remaining arguments")

 for arg in args:

print(arg,end=' ')

fun("an","example","of","extra","argument")

OUTPUT:

First argument= an

Remaining arguments

example of extra argument

The first argument an to the function fun is fixed and rest all other are variable number of arguments.

Not just one fixed argument, any number of fixed arguments are allowed but variable number argument

syntax (*args) must be the last one if using.

5.13.1 The keyword arguments (**kwargs)

Apart from passing variable number of non-keyword argument using *args syntax, you can also pass

variable number of keyword arguments using **kwargs syntax. Every keyword has a value. The name

of word is treated as keys of dictionary and name value is equivalent to corresponding value of the key.

Let’s understand using an example:

def fun(**args):

 print(args)

fun(name='kuhu',age=21)

fun(name='kuhu',age=21,city='delhi')

OUTPUT:

{'name': 'kuhu', 'age': 21}

{'name': 'kuhu', 'age': 21, 'city': 'delhi'}

First call of the function fun passed two keyword arguments: name and age. The corresponding values

Python Programming Simplified

170

are ‘kuhu’ and 21. Next function call passes one additional keyword argument: city with

corresponding value ‘delhi’. As mentioned above the keyword arguments are passed in the form of

dictionary with keyword name as keys and their values as values. Let’s modify the above code and

display keys and values from passed arguments.

def fun(**args):

 for k in args:

 print(k,":",args[k],end=' ')

 print()

fun(name='kuhu',age=21)

fun(name='kuhu',age=21,city='delhi')

fun(name='kuhu',age=21,city='delhi',job='lecturer')

OUTPUT:

name : kuhu age : 21

name : kuhu age : 21 city : delhi

name : kuhu age : 21 city : delhi job : lecturer

For every k which represents a key for the named argument,args[k] represent the value. Thus, for

k=name, args[‘name’] gives ‘kuhu’ and for k=age, args[‘age’] gives 21. Rest is easy to understand.

The other way to write the above function fun is :

def fun(**args):

 for key,value in args.items():

 print(key,":",value,end=' ')

 print()

Here the function items of dictionary args gives a (key, value) pair in every iteration of the for loop,

like [('name', 'kuhu'), ('age', 21)] for function call fun(name='kuhu',age=21)

To wrap up this section we provide an example to combine fixed argument, variable argument and

variable keyword arguments. Let’s see the code given below:

def fun(a,*args,**kargs):

 print("First argument=",a)

 print("Variable arguments")

 for x in args:

 print(x,end=' ')

 print()

 print("Keyword arguments")

 for k in kargs:

 print(k,kargs[k])

Python Programming Simplified

171

fun(20,"Hello",30,3.45,name='kuhu',age=21,city='delhi')

OUTPUT:

First argument= 20

Variable arguments

Hello 30 3.45

Keyword arguments

name kuhu

age 21

city delhi

5.14 Recursion

Recursion is a programming technique in which a function calls itself for several times until a

condition is satisfied. It’s a very important technique to understand and once understood many long

listing of code can be reduced to a few number of lines. Recursion basically a word mostly used in

mathematics to state a new term in previous term such as

 Xn+1 = Xn + 1 for n>=1 and X1 = 1

 Then we can calculate X2 in terms of X1 , X3 in terms of X2 and so on.

When solving a problem through recursion two conditions must be satisfied.

1. The problem must be expressed in recursive manner.

2. There must be a condition which stops the recursion otherwise there would be a stack overflow.

Let’s write few programs which illustrate how recursion works.

Script 5.26 Factorial of a number using recursion

def fact(n):

 if n<=1:

 return 1

 else:

return n*fact(n-1)

num=int(input("Enter an integer number\n"))

ans=fact(num)

print("Factorial of",num,"is",ans)

OUTPUT:

Enter an integer number

8

Python Programming Simplified

172

Factorial of 8 is 40320

 Assume n is 4 , now recursion works as :

 N function returns

 4 4 * fact (3)

 3 4 * (3 * fact(2))

 2 4 * (3 * (2 * fact (1)))

 1 4 * (3 * (2 * 1)))

 When recursion starts each call to function fact creates new set of variables (here only one). When

ever recursion starts the recursive function calls does not execute immediately (in reality function

addresses are put into stack). They are saved inside the stack along with the value of variables. (A

stack is a data structure which grows upward from max_limit to 1. Each new item is pushed in

the stack takes its place above the previously entered item. The items are popped out in the

reverse order in which they were entered ie last item is popped out first. That’s why they are

called LIFO (last in first out)). This process is called winding in the recursion context. When

recursion is stopped in the above program when n becomes 1 and function return the value 1, all the

function call saved inside the stack are popped out from the stack in the reverse order and get

executed ie fact(1) returns to fact(2) ,fact(2) returns to fact(3) and in the end fact (3) returns to

fact(4) which ultimately return to the main. This process is called unwinding.

Script 5.27 Display the entered number using recursion

def show(n):

 if n//10==0:

 print(n%10,end='')

 return

 show(n//10)

 show(n%10)

num=int(input("Enter a number\n"))

print("u entered")

show(num)

OUTPUT:

Enter a number

345

u entered

345

Python Programming Simplified

173

The program prints the number entered but this is done through recursion. Assume the number is 234.

We understand the process step by step

Step 1 n=234 the if condition is false recursion starts here by calling show (234//10) i.e. show(23).

Step 2 n=23 if condition is false, now show (23//10) is called i.e. show (2) is called.

Step 3 n=2 if condition is true this time 2 is printed on the screen and function returns. As

function returns for the value of n=23 it returns to next statement from where it was called is show

(23%10) i.e. show (3) is called.

Step 4 n=3 if condition is true and 3 is printed. When function returns it has executed all the

statements of show function for n=23 and it returns to show(n%10) statement for n=234. This time

show(4) is called .

Step 5 n=4 if condition is true and 4 is printed and function returns to main..

Script 5.28 Fibbonacci Series using recursion

def fibbo_series(a,b,n):

 if n:

 print(a,end=',')

 n=n-1

 fibbo_series(b,a+b,n)

 else:

 return

num=int(input("Enter the number of terms\n"))

print("Fibonacci series up to",num,"terms")

fibbo_series(0,1,num)

OUTPUT:

Enter the number of terms

6

Fibonacci series up to 6 terms

0,1,1,2,3,5,

The code prints the fibbonacci series up to given nth term. In the function fibbo_series we pass 3

parameters. First two are the values from which next term of the series will be evaluated and last

parameter is the number of term. Assume value of n is 5. When the function is called from main the

value of a is 0, b is 1 and n is 5.

Step 1 n=5 if condition is true and value of a is printed i.e. 0 and recursion starts by calling

fibbo_series(1,1,4).

Step 2 n=4 if condition is true and again 1 is printed, fibbo_series(1,2,3) is called.

Step 3 n=3 if condition is true and 2 is printed, fibbo_series(2,3,2) is called.

Python Programming Simplified

174

Step 4 n=2 if condition is true and 3 is printed, fibbo_series(3,5,1) is called.

Step 5 n=1 if condition is true and 5 is printed, fibbo_series(5,8,0) is called.

Step 6 n=0 if condition is false and function returns. .

Script 5.29 nth term of Fibonacci series using recursion

def fib_ser_term(n):

 if(n==2 or n==3):

 return 1

 elif (n==1):

 return 0

 else:

 return fib_ser_term(n-1)+fib_ser_term(n-2)

n=int(input("Enter the number of terms: "))

print(n," th term of series is ",fib_ser_term(n))

OUTPUT:

Enter the number of terms: 6

6 th term of series is 5

The program finds nth Fibonacci series term through recursion. The function fib_ser_term works as

follows assume n is 6 so series will be

0 1 1 2 3 5 and the 6th term will be 5.

Step 1 n=6 recursion starts as fib_ser_term(5)+fib_ser_term(4);

Step 2 In the step 1 the function is called twice one with value of 5 and another with value of 4.

Function call fib_ser_term(5) results in fib_ser_term(4)+fib_ser_term(3) and fib_ser_term(4)

results in fib_ser_term(3)+fib_ser_term(2)

Step 3. Continuing in this manner when call fib_ser_term(1) and fib_ser_term(0) occurs then

function returns 1.

In short to get the result we show in the following manner

fib_ser_term(2)=fib_ser_term(1)+ fib_ser_term(0)

 = 1 + 0

 = 1

fib_ser_term(3)=fib_ser_term(2)+ fib_ser_term(1)

 = 1 + 1

 = 2

fib_ser_term(4)=fib_ser_term(3)+ fib_ser_term(2)

 = 2 + 1

 = 3

fib_ser_term(5)=fib_ser_term(4)+ fib_ser_term(3)

 = 3 + 2

Python Programming Simplified

175

 = 5

This last result 5 is returned to the main when unwinding finishes.

Script 5.30 hcf of two numbers using recursion

def hcf(a,b):

 if(b==0):

 return a

 else:

 return hcf(b,a%b)

a=int(input("Enter the first number\n"))

b=int(input("Enter the second number\n"))

ans=hcf(a,b)

print("hcf of two numbers is ", ans)

OUTPUT:

 Enter the first number

99

Enter the second number

78

hcf of two numbers is 3

The recursive method of finding the hcf of two numbers was given by renowned mathematician

Euclid. We have used the same method in our function. The working is as follows for a=99,b=78

Step 1 a=99 , b=78 if condition is false function returns hcf(78,99%78) is hcf(78,21).

Step 2 a=78,b=21 if condition is false ,function returns hcf(21,78%21) is hcf(21,15).

Step 3 a=21,b=15 if condition is false ,function returns hcf(15,21%15) is hcf(15,6).

Step 4 a=15,b=6 if condition is false ,function returns hcf(6,15%6) is hcf(6,3).

Step 5 a=6,b=3 if condition is false ,function returns hcf(3,6%3) is hcf(3,0).

Step 4 a=3,b=0 if condition is true ,function returns a ie 3 and this is our desired answer..

Script 5.31 sum of series 1 + 2 + 3 + 4 + 5 + .. n through recursion

def sum(term):

 if term>0:

 return (term+sum(term -1))

 else:

Python Programming Simplified

176

 return 0

n=int(input("Enter the number of terms\n"))

s=sum(n)

print("Sum of series up to",n,"terms is",s)

OUTPUT:

Enter the number of terms

10

Sum of series up to 10 terms is 55

 The function sum is quite easy to understand. Assume n is 5

Then function will be returned as

 5+sum(4)

 5+4 + sum(3)

 5+4 + 3+ sum(3)

 5+4 + 3 + 2 +sum(1)

 5+4 + 3 + 2 +1+sum(0)

 5+4+3+2+1+0

The last expression will be summed up and returned to the calling function i.e. main when unwinding

finishes.

On the similar ground you can find the sum of series: 1+3+5+7+9+. using following function:

def sum(term):

 if term>0:

 return (2*term-1+sum(term -1))

 else:

 return 0

5.15 The Tower of Hanoi puzzle.

The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle. The puzzle was

invented by the French mathematician Edouard Lucas in 1883.It consists of three pegs, and a number

of discs of different sizes which can slide onto any peg. The puzzle starts with the discs neatly stacked

in order of size on one peg, smallest at the top, thus making a conical shape.

The object of the game is to move the entire stack to another peg, obeying the following rules:

⚫ only one disc may be moved at a time

⚫ no disc may be placed on top of a smaller disc

Python Programming Simplified

177

Fig 5.1:Tower of Hanoi (3 pegs,8 discs)

5.15.1 Solution as Recursive algorithm

1. label the pegs A, B, C -- these labels may move at different steps.

2. let n be the total number of discs.

3. number the discs from 1 (smallest, topmost) to n (largest, bottommost)

4. To move n discs from peg A to peg C using auxiliary peg B:

4.1 Move n-1 discs from A to B. This leaves disc #n alone on peg A.

 4.2 Move disc #n from A to C.

4.3 Move n-1 discs from B to C so they sit on disc #n.

The above is a recursive algorithm: to carry out steps 1 and 3, apply the same algorithm again for

n−1. The entire procedure is a finite number of steps, since at some point the algorithm will be required

for n = 1. This step, moving a single disc from peg A to peg C, is trivial.

Python Programming Simplified

178

Fig 5.2 : All steps to move discs from A to C , B as auxiliary peg.

 def TOW_HON(A,C,B,n):

 if(n<=0):

 print("Error, invalid disc number\n")

 if(n==1):

 print("Move disc from %s to %s"%(A,C))

 else:

 TOW_HON(A,B,C,n-1)

 TOW_HON(A,C,B,1)

 TOW_HON(B,C,A,n-1)

n=int(input("Enter the number of discs\n"))

print("The steps for the solution are")

TOW_HON("A","C","B",n)

OUTPUT:

Enter the number of discs

3

Python Programming Simplified

179

The steps for the solution are

 Move disc from Peg1 to Peg2

 Move disc from Peg1 to Peg3

 Move disc from Peg3 to Peg1

 Move disc from Peg1 to Peg2

 Move disc from Peg2 to Peg3

 Move disc from Peg2 to Peg1

 Move disc from Peg1 to Peg2

Fig 5.3 : Recursion unrolled for 3 discs

5.16 The lambda function

We have seen number of examples of creating functions in this chapter. All these functions are created

using the def keyword and has a name. It is possible in python to create functions without any name.

This can be done using the lambda keyword. Using this keyword, we can create some functions which

are small, without any name and used only once. These functions are known as lambda function. The

function can take any number of arguments, but the body must contain only a single expression. These

are used whenever we need a function object in any expression or in function call. Further they can be

passed to other functions also.

The syntax of creating lambda function is:

lambda arguments: expression

Python Programming Simplified

180

Here arguments are passed which the are evaluated by the expression and returned. The colon separates

arguments and expression. You can notice that return statement is not required when using lambda

function. Lambda functions are sometimes known as lambda operator. Let’s understand this using an

example in shell:

>>>fun=lambda x:x*x

>>> fun(2)

4

Here the lambda function is created that takes just single argument x and return x*x which is

expression here. This is assigned to fun and function is called as fun(2). This assigns 2 to x and

expression x*x changes to 2*2 and 4 is returned. The function is equivalent to

def fun(x):

 return x*x

The lambda function if required do not need to be assigned to any variable.

>>> (lambda x,y:x+y)(2,3)

5

5.16.1 The map function

As stated earlier lambda function can be used as an argument to other functions. Some of the most

common built-in functions where this is useful are map and filter. The function map will be discussed

here and filter in next section. Syntax of the map function is :

map(func,iterables)

The map function takes two arguments: first is the function and second is any iterables such as list, set,

tuple. The function func is appled on every element of the iterable. Let’s see in effect using an example

both in shell and as a script:

(In Shell)

>>> def sqr(x):

... return x*x

...

>>> L=list(range(10,16))

>>> L

[10, 11, 12, 13, 14, 15]

>>> LS=map(sqr,L)

>>> list(LS)

[100, 121, 144, 169, 196, 225]

#(Python Script)

def sqr(x):

 return x*x

L=list(range(10,16))

Ls=map(sqr,L)

print(list(Ls))

OUTPUT:

[100, 121, 144, 169, 196, 225]

Here we have a function sqr that finds square of a number supplied as argument. We create a list

L=[10,11,12,13,14,15] using range and list function. The map function takes sqr as first argument and

Python Programming Simplified

181

L as second argument. The function sqr is called for every element of the list L and result is stored in

LS (an new map object). The returned map object is to be converted into an iterable using list function

so list(LS) gives us [100, 121, 144, 169, 196, 225]

Now we have seen a simple example of map function let’s see how can be write the above code using

lambda function. Just replace the function sqr in map function with the code: lambda x: x*x. So our

script becomes:

L=list(range(10,16))

Ls=map(lambda x:x*x,L)

print(list(Ls))

Here x takes on values from the list L and performs x*x and returns.

In the above example the lambda function was taking just one argument. What if it takes more than one

argument. Let’s find sum of two numbers for every element at same position in the list as an illustrative

example.

LS=map(lambda x,y:x+y,[10,20,30,40,50],[23,34,45,56,67])

print(list(LS))

OUTPUT:

[33, 54, 75, 96, 117]

For the first iteration x takes value 10 and y takes 23, element at 0th position from both the list. For

second iteration x and y takes element at 1st position that is 20 and 34. In the similar manner all

respective elements at all other positions are summed up and stored in the variable LS. The same is

displayed after converting it into list.

Its not necessary that when lambda function takes two arguments length of two supplied lists in the

map function should match. Number of elements can differ. Arguments equal to the smaller length are

considered and extra elements from larger list are ignored. See an example:

>>> print(list(map(pow,[2,3,4],[3,2,5,5])))

[8, 9, 1024]

>>> print(list(map(pow,[2,3,4,5],[3,2,5])))

[8, 9, 1024]

5.16.2 The filter function

As the name suggests the filter function perform filtering of elements. The syntax is :

filter(func,iterable)

The function takes function func and only one iterable as argument. It returns all the elements for which

the func returns true. Let’s understand using an example:

>>> L=[2,4,7,9,12,34,57]

Python Programming Simplified

182

>>> LO=filter (lambda x:x%2,L)

>>> list(LO)

[7, 9, 57]

Here the lambda function checks x to be an odd number. For every element x in L if x%2 is not zero

then x is returned. To check for even number just change expression to x%2==0 or not x%2. This time

we show as a script.

L=[2,4,7,9,12,34,57]

LE=filter (lambda x:not x%2,L)

print(list(LE))

OUTPUT:

[2, 4, 12, 34]

One more small example is to remove all zero elements from an iterable and keep non zero elements.

See the next script

L=[2,4,0,9,0,34,0]

LE=filter (lambda x:x!=0,L)

print(list(LE))

OUTPUT:

[2, 4, 9, 34]

5.16.3 The reduce function

The reduce function was part of python 2 but removed in python 3. I think it’s a useful function and we

will cover this here. As it is not directly available we need to import functools to use it. It can be

imported as: from functools import reduce

The reduce function is used to repeatedly apply a function to an iterable. Assume your iterable contains

elements as [e1,e2,e3,e4,e5] then function func is applied to e1 and e2, result is say A. Then func is

applied to A and e3,result is say B. Then func is applied to B and e4, result is say C. Finally the func is

applied to e5 and C and result is returned. An example will clarify the above:

>>> from functools import reduce

>>> reduce(lambda x,y: x+y, [10,5,2,11])

28

Here lambda function calculates 10+5 and returns 15. Next lambda function calculates 15+2 and

returns 17, then operation 17+11 is done and 28 is returned. That is the above reduce function is

performing cumulative sum of all the elements.

If instead of + , you use * then it gives you cumulative multiplication of all the elements. Let’s see

some more examples:

Finding maximum of a list of elements

>>> L=[4,56,23,45,78,89,12]

>>> x=reduce(lambda x,y:x if x>y else y,L)

Python Programming Simplified

183

>>> x

89

Sum of values in a given range

>>> x=reduce(lambda x,y:x+y,range(1,11))

>>> x

55

Script Finding factorial of a given number

from functools import reduce

num=int(input('Enter a number\n'))

if num<=0:

 print("Factorial is 1")

import sys;sys.exit()

fact=reduce(lambda x,y:x*y,range(1,num+1))

print("Facotiral of ",num,"is",fact)

5.17 Ponderable Points

1. Based on the nature of creation there are two categories of functions : built-in and user defined.

2. The def keyword is used to create a function.

3. The functions which are predefined and supplied along with the compiler are known as built-in

4. functions.

5. The function main () is present in python but kind of invisible.

6. A function that performs no action is known as dummy function. It is a valid function. Dummy

7. functions may be used as a place-holder, which facilitates adding new functions later on. For

8. Example : def dummy() :

pass

9. Advantages of recursion

(i) Easier understanding the program logic.

(ii) Helpful in implementing recursively defined data structures.

(iii) Compact code can be written.

10. Use of return statement helps in early exiting from a function apart from returning a value from a

function.

11. In a function with default argument, when one argument is default, then all successive arguments

(towards right) must be default.

Python Programming Simplified

184

12. Function description can be written inside function in triple quotes and can be used as

function_name.__doc__

13. Python supports calling function by name where order of argument name does not matter.

14. When function does not return any value and yet you use the function as if it is returning a value

then default value None is returned

15. A function can return more than one value in the form of tuple, list or dictionary.

16. Use of global keyword allow us to use global variable inside a function.

17. python provides a global dictionary in the form of symbol table that keeps values of all global

variables used within a single python file. This is used as : globals ()[‘globalvariablename’].

18. A function is a first class object in python so function name can be assigned to another variable can

be stored in list ,in dictionary or in any collection.

19. A python function having single parameter with asterisk (*) as prefix can accept variable number

of arguments.

20. Apart from passing variable number of non-keyword argument using *args syntax, you can also

pass variable number of keyword arguments using **kwargs syntax

21. Anonymous function can be created using lambda keyword.

22. The map function is used to apply a function onto any iterable.

23. The filter function is used to apply a function onto any iterable and filters elements when condition

as stated in function is true.

Python Programming Simplified

185

6. Strings in Python

 6.1 What is Python String ?

Strings in Python are sequence of characters, digits, symbols enclosed within single or double

quotes. . Strings are used for the manipulation of words and sentences. Few examples of Python strings

are “A book”, “xyz$56” ‘This is demo’ etc. We see number of examples of strings in our daily life.

Name of a person, subject name, course name, color of any object etc. It’s not necessary that a string

should only contain characters, it may contain any symbol but only within single or double quotes.

Strings can also be enclosed within triple quotes. This is specially used for documentation string or

multiline strings.

The encoding used for representation of string characters is Unicode as it can represent almost any

character present in any language of the world.

6.2 Creating Strings

The strings can easily be created by enclosing any type of data within single, double or triple quotes.

See this in shell:

>>> s="Hello";print(s)

Hello

>>> s='Hello';print(s)

Hello

Without print the strings are printed with quotes :

>>> s='Hello';s

'Hello'

>>> s="Hello";s

'Hello'

For creating multiline strings just continue the string with backslash character “\”

>>> s="This is an \

... example of \

... multiline \

... string"

>>> s

'This is an example of multiline string'

>>> print(s)

Python Programming Simplified

186

This is an example of multiline string

Another way to create multiline strings is using triple quotes.

>>> s="""This is an example

... of multiple lines

... using triple quotes

... """

>>> s

'This is an example\nof multiple lines\nusing triple quotes\n'

>>> print(s)

This is an example

of multiple lines

using triple quotes

6.3 Accessing String

As we have seen in the previous section just writing name of the string in shell and in print function

displays the contents of the string. But for accessing individual elements subscript notation [index] can

be used. The first element of the string is at index 0 and not 1. Even indexing can be done from the last

element. The last element is at index -1, second last is at -2 and so on. The length of the string is the

total number of characters present in it. Lets see some examples:

>>> s='Python'

>>> s[0]

'P'

>>> s[2]

't'

>>> s[-1]

'n'

>>> s[-2]

'o'

>>> type(s)

<class 'str'>

>>> len(s)

6

The index for a string can be an integer literal, variable or even any expression but all must yield an

integer. See shell in action:

>>> s=’Python’;s

'Python'

>>> x=1

>>> s[x]

'y'

>>> s[x-2]

'n'

>>> x=2

>>> s[x*2+1]

'n'

Python Programming Simplified

187

>>> s[x*10]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

The last expression gives error as s[20] is out of the range of 0 to 5.

6.4 String Slicing

Python also permits us to select a portion of a string using index. This can be done by specifying range

of characters and their indexes. The syntax is

string[start:last:step]

Default value for start is 0, stop is len(string) and step is 1.

See shell in action with proper explanation. Assuming string s=’Strings in Python’

Sr.No Shell Code Explanation

1. >>> s[0:7]

‘Strings’
Select string slice from index 0 to 6(7-1)

2. >>> s[2:7]

‘rings’
Select string slice from index 2 to 6(7-1)

3. >>> s[8:]

‘in Python’
Select string slice from index 8 to the end of the string

s

4. >>> s[11:-1]

‘Pytho’
Select string slice from index 11 to the end without

including last character at index -1.

5. >>> s[-6:-1]

‘Pytho’
Select string slice from index -6 to -1 non inclusive

6. >>> s[0::2]

‘Srnsi yhn’

>>> s[0:len(s):2]

‘Srnsi yhn’

>>> s[::2]

‘Srnsi yhn’

Select string slice from index 0 to end of the string

with a step size of 2. First and last have default value

as 0 and length of the string: len(s).

8. >>> s[::-1]

‘nohtyP ni

sgnirtS’

Reverses the string. From last value to 0 index with a

step size of -1. When negative index is used then

default initial and last value reverses.

9. >>> s[:-1]

‘Strings in

Pytho’

All but last character.

10

.

>>> s[::-2]

‘nhy isnrS’
String reversal with step size of 2 from last to

beginning.

11

.

>>> s[6:0:-1]

‘sgnirt’
From index 6 to 0 non inclusive in reverse order.

12

.

>>> s[:]

'Strings in
Takes default values of start, stop and step.

Python Programming Simplified

188

Python'

6.5 String operators

Strings in python supports three operators: + for concatenation, * for repetition and in, not in for

membership. They are shown in table:

Table 6.1 : String Operators

Sr.No Operator Remarks

1. + String concatenation, “Hello”+”World” gives “HelloWorld”

2. * String repetition, “Hi”*3 gives “HiHiHi”.

3. in, not in Checks for membership of element to string,

(a) ‘n’ in ‘python’ returns True

(b) ‘i’ not in ‘python’ returns True

Let’s see some examples:

>>> s1="Hello";s2="Python"

>>> s3=s1+" "+s2

>>> print(s3)

Hello Python

>>> s4="An"+"Example in "+s2

>>> s4

'AnExample in Python'

>>> "Hi"*4

'HiHiHiHi'

>>> 'i' in s2

False

>>> 'i' not in s2

True

String concatenation can only be performed between two strings. You cannot mix any other type with

the string. If you try to do so you will get error:

>>> s="Hello"+123

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: must be str, not int

The solution is to simply type cast or convert non-string to string data type by str function.

>>> s="Hello"+str(123)

>>> s

Python Programming Simplified

189

'Hello123'

>>> x=10

>>> y=20

>>> s="Sum of "+str(x)+"and"+str(y)+"is"+str(x+y)

>>> print(s)

Sum of 10and20is30

6.6 String traversal

As string is nothing but a sequence of characters, it can be easily traversed using a loop. Using a loop

each character can be analyzed and processed depending upon the problem at hand. For example,

vowels can be counted, any specific character can be counted, character case can be changed, or any

other required processing can be performed. Let’s write some good scripts to illustrate string traversal

in python.

Script 6.1 to count number of vowels in a given string using while #loop

s=input('Enter a string\n')

i=0

count=0

while i<len(s):

 if s[i] in 'aeiouAEIOU':

 count+=1

 i=i+1

print("Number of vowels=",count)

OUTPUT:
Enter a string

THIS IS test

Number of vowels= 3

Input string is taken from user and stored in s. The character of the string s are from s[0] to s[len(s)-1].

The while loops runs for all the characters in the string s starting from 0 and upto len(s)-1. This is done

by loop control variable i. The variable count is incremented whenever a vowel is found in string s.

This is checked using membership operator in. At the end of the loop number of vowels are displayed.

The same code without much effort can be written using for loop too. In fact string processing using for

loop is favored by most python programmers simply because of its ease and simplicity.

Script 6.2 to count number of vowels in a given string using for loop

s=input('Enter a string\n')

count=0

for char in s:

 if char in 'aeiouAEIOU':

 count+=1

print("Number of vowels=",count)

OUTPUT:
Enter a string

THIS IS test

Python Programming Simplified

190

Number of vowels= 3

Here the char variable takes on values from string s one by one directly without using any index. That

is first time char has value ‘T’, second iteration it has ‘H’ and so on.

Script 6.3 to find length of a string without built in function

s=input('Enter a string\n')

count=0

for char in s:

 count+=1

print("Length of string=",count)

OUTPUT:
Enter a string

python

Length of string= 6

The for loop increments count for every character in the string, thus when for loop ends, count

stores length of the string. This can also be put inside a function as:

def mylen(s):

 count=0

 for char in s:

 count+=1

 return count

It can be used as

print("Length=",mylen("python"))

Let’s see one more script which checks two strings and tells which string is greater in length.

We make use of the function mylen created above.

Script 6.4 String comparison without built in function

def mylen(s):

 count=0

 for char in s:

 count+=1

 return count

s1=input("Enter first string\n")

s2=input("Enter second string\n")

if mylen(s1)>mylen(s2):

 print(s1,"is greater in length than",s2)

elif mylen(s1)<mylen(s2):

 print(s2,"is greater in length than",s1)

else:

 print(s1,"is equal in length to",s2)

OUTPUT:

Python Programming Simplified

191

(First Run)
Enter first string

cat

Enter second string

cats

cats is greater in length than cat

(Second Run)
Enter first string

python

Enter second string

cooler

python is equal in length to cooler

We simply find the length of two strings and compare them using else if ladder. To conclude this

section let’s write a script which changes the case of letters from upper to lower and vice versa, leaving

non-alphabets as it.

Script 6.5 Function to convert case of alphabets in a given string

def togglecase(s):

 import string

 ns=''

 for char in s:

 if char in string.ascii_uppercase:

 convert=chr(ord(char)+32)

 elif char in string.ascii_lowercase:

 convert=chr(ord(char)-32)

 else:

 convert=char

 ns=ns+convert

 return ns

print(togglecase('ThIs WoRkS'))

The important point here is the use of string module that defines number of built in constants. We will

cover string module in detail later in this chapter but string.ascii_uppercase and

string.ascii_lowercase are simply strings containing all uppercase and lowercase characters

respectively.

>>> import string

>>> string.ascii_uppercase

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> string.ascii_lowercase

'abcdefghijklmnopqrstuvwxyz'

Every character from string is checked whether it belongs to any of the constant strings used from

string module. ASCII values for uppercase alphabets is from 65-90 and for lowercase alphabets it is 97-

122. The difference between ASCII values of upper case and lower case character is 32.

Python Programming Simplified

192

For conversion from lower to upper we subtract 32 and converting from upper case to lower case we

add 32. But even a single character is a string in python and arithmetic of integer and string is not

allowed in python:

>>> 'a'-32

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'int'

For that character is converted to its ASCII value, arithmetic operation is performed and again

converted back to character. For example say char=’t’, ord(‘t’) gives 116, subtracting 32 from it gives

84 and chr(84) gives ‘T’.

6.7 String is immutable

The string object does not support item assignment. That is once a string is initialized you cannot

change its content. It is possible to extract some portion of a string and create new string but in now

way original string can be mutated. See shell in action:

>>> s="Attitude"

>>> s[0]='L'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Here we try to change the first character of the string s, which the python does not allow. It throws a

TypeError. But what if instead of changing just one character we try to assign a new string literal to

variable s. Let see what happens:

>>> s="Positive"

This happened without any error as now a new string literal “Positive” is created in memory and s

points to that. The old variable s is now lost. Another concept which is worth mentioning here is

through the following example:

>>> s="Positive"

>>> id(s)

2093790809072

>>> s=s+" Attitude"

>>> s

'Positive Attitude'

>>> id(s)

2093790894456

Here you may think that writing : s=s+” Attitude” is modifying the original string s but the

contents of s and “ Attitude” are concatenated together and assigned to new variable s. The old

variable s no longer exists containing value “Positive”.

Python Programming Simplified

193

Following shell code let you create a new string by using some slice from existing string:

>>> s="Positive"

>>> ns="Nega"+s[4:]

>>> ns

'Negative'

Immutability also applies on deletion of one or more characters from an existing string but again whole

string can be deleted easily:

>>> del ns[1]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object doesn't support item deletion

>>> del ns

>>> ns

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'ns' is not defined

6.8 String Comparison

In section 6.6 we saw one python script for comparing two strings based on their length. But actual

comparison is based on ASCII values of the individual characters present in the string. Let’s see some

example and then we’ll write one script for the same.

>>> s1='Apple'

>>> s2='Banana'

>>> s1==s2

False

>>> s1>s2

False

>>> s2>s1

True

>>> s1=='Apple'

True

>>> s1=='apple'

False

>>> s1>'Applet'

False

Python compares two strings and returns a +ve value if first string is greater than second string, -ve

value if first string is smaller than second string and a zero value if both strings are equal . What is the

+ve or -ve value? Actually it returns the ASCII difference of the first unmatched character.

The ascii value of ‘A’ is 65 and of ‘B’ is 66 so string s2>s1 returns True. If string s1=‘Cot’ and

s2=‘Cop’ are compared than first mismatched character is ‘t’ in s1 and ‘p’ in s2. The difference in their

ASCII values are ord(‘t’)-ord(‘p’)= 4. This means string s1 is greater than s2.

Python Programming Simplified

194

Script 6.6 to compare two string by contents
s1=input('Enter first string\n')

s2=input('Enter second string\n')

if s1>s2:

 print(s1,'is greater than',s2)

elif s1<s2:

 print(s2,'is greater than',s1)

else:

 print(s1,'and',s2,'is equal')

OUTPUT:
Enter first string

apple

Enter second string

banana

banana is greater than apple

The slight problem with the above script is that it is case sensitive. For example, ‘Apple’ is smaller

than ‘apple’ because of ASCII value difference. To make our code case insensitive either we can make

string to be compared all in upper case or lower case. We here use lower method of string class (not

module string) prior to checking string for comparison.

s1=input('Enter first string\n')

s2=input('Enter second string\n')

s1=s1.lower()

s2=s2.lower()

if s1>s2:

 print(s1,'is greater than',s2)

elif s1<s2:

 print(s2,'is greater than',s1)

else:

 print(s1,'and',s2,'is equal')

OUTPUT:
Enter first string

Apple

Enter second string

apple

apple and apple is equal

6.9 Methods of string class

Every string belongs to class ‘str’ and every string is an object.

>>> type('xyz')

<class 'str'>

>>> type('xyz') is str

True

The various methods of ‘str’ class can easily be used by any string. One such example we have just

seen in the script above. To find out all the methods of ‘str’ class just type dir(str) in python shell:

Python Programming Simplified

195

>>> dir(str)

['__add__', '__class__', '__contains__', '__delattr__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__',

'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__',

'__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode',

'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index',

'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower',

'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join',

'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',

'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines',

'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Help for any method can easily be seen in the shell by writing : help(str.methodname). For example:

>>> help(str.replace)

Help on method_descriptor:

replace(...)

 S.replace(old, new[, count]) -> str

 Return a copy of S with all occurrences of substring

 old replaced by new. If the optional argument count is

 given, only the first count occurrences are replaced.

Some of the commonly used methods are discussed here.

1.find: the find method finds index of the substring in a string. Default index are from start(0) to

end(length of string non inclusive), it returns -1 when substring is not found.

>>> s='positive'

>>> s.find('i')

finds first occurrence of ‘i’ in s (from index 0 to 7)

3

>>> s.find('i',4)

finds first occurrence of ‘i’ in s (from index 4 to 7)

5

>>> s.find('i',2,4)

finds first occurrence of ‘i’ in s (from index 2 to 3)

3

>>> s.find('i',4,5)

finds first occurrence of ‘i’ in s (from index 4 to 4)

-1

>>> s.find('it')

3

2. capitalize: Capitalize the first character of string

Python Programming Simplified

196

>>> s='positive'

>>> s.capitalize()

'Positive'

3. center: The method center a string. The arguments are width and fill character. Default fill

character is space.

>>> s.center(40,'*')

'****************positive****************'

4. count: The method counts number of occurrences of a given substring.

>>> s='aabrakadabra'

>>> s.count('a') # ‘a’ appears 6 times in string s

6

>>> s.count('g') # ‘g’ does not appear in string

0

>>> s.count('ab') # ‘ab’ appear 2 times in string s

2

5. endswith: The method checks if a given string ends with a specified suffix.

>>> 'position'.endswith('tion')

string ‘position’ has ‘tion’ as suffix

True

>>> 'position'.endswith('tive')

string ‘position’ does not have ‘tive’ as suffix

False

6. startswith: The method checks if a given string begins with a specified prefix.

>>> 'preempt'.startswith('pre')

True

>>> 'dislike'.startswith('dis')

True

>>> 'sosweet'.startswith('soo')

False

7. index: Similar to find method but raises error when string not found.

>>> 'positive'.index('g')

find method returns -1 when substring not found

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: substring not found

8. isalnum: The methods checks whether string contains only alphabets and digits, returns True if

so else return False.

Python Programming Simplified

197

>>> 'abc123'.isalnum()

True

>>> 'a+b'.isalnum()

False

>>> 'ab'.isalnum()

True

Similar to this isalpha checks for all characters to be alphabets only, isdigit, isdecimal, isnumeric

checks for all digits to be only between 0-9, there are minor differences among these functions but its

not necessary to discuss here. Inquisitive user is encouraged to google the differences.

9. istitle: The method checks string for title case. Every word’s first character must be capital and

all other characters of a word be in lowercase.

>>> 'Fun'.istitle()

‘F’ in ‘Fun’ is capital

True

>>> 'FunF'.istitle()

‘F’ in ‘FunF’ is capital but ‘F’ after ‘n’ is also capital

False

>>> 'funF'.istitle()

‘f’ in ‘funF’ is small

False

>>> 'Demo Of Title'.istitle()

Every word is capitalized

True

10. isupper: checks the string is in upper case or not

>>> 'HELLO'.isupper()

True

>>> 'Hi'.isupper()

False

Similar to this we have islower to check string for all lowercase characters. Two more methods are

their for conversion from lower to upper and vice versa. These are lower and upper.

11.join: The join method takes an iterable (list, tuple etc) and joins all elements of the iterable

using a string which can be space or any other special character.

>>> ' '.join(('An','example','of','join'))

'An example of join'

>>> ' '.join(['An','example','of','join'])

'An example of join'

>>> '$'.join(['An','example','of','join'])

'An$example$of$join'

Python Programming Simplified

198

In the first example we have a tuple of 4 strings which are joined by space character. Second

example replaces tuple by list and third example uses ‘$’ as joining character.

12.strip: The strip function removes extra whitespaces(space and tabs) from beginning and end of

the string. For removing either from left or right you can use lstrip and rstrip functions.

>>> s=' Strip demo '

>>> s.strip()

'Strip demo'

>>> s.rstrip()

' Strip demo'

>>> s.lstrip()

'Strip demo '

13. partition: The method separates the string based on some separator, supplied as argument to

partition function. The function returns three strings: string before the separator, separator itself,

string after the separator. When separator is not found than the whole string is returned as first string

and remaining strings are treated as empty. See shell in action:

>>> s='It is an example'

>>> s.partition('an')

breaks s on ‘an’ and returns 3 strings as tuple

('It is ', 'an', ' example')

>>> s.partition('just')

‘just’ is not in s so second and third strings are empty

('It is an example', '', '')

>>> s='I just love python' # breaks on ‘love’

>>> s.partition('love')

('I just ', 'love', ' python')

>>> s='key:value' # breaks on ‘:’

>>> s.partition(':')

('key', ':', 'value')

One big issue with partition method is that the supplied separator works with embedded string also. For

example:

>>> s='This is another example'

>>> s.partition('an')

('This is ', 'an', 'other example')

This is not desirable in most of the programming situations.

Another issue is that the partition method breaks the string only at the first occurrence of the separator.

If you have more than one separator appearing in the string than they are not considered and become

the part of third string post separator.

>>> s='Keep the spirit on and on and on'

>>> s.partition('on')

Python Programming Simplified

199

('Keep the spirit ', 'on', ' and on and on')

>>> s.partition('and on')

('Keep the spirit on ', 'and on', ' and on')

In first example the separator is ‘on’ and in second example the separator is ‘and on’.

The advantage of partition returning three strings in a single tuple is that string can be easily recreated

back using join method.

>>> s='Keep the spirit on and on and on'

>>> part=s.partition('on')

>>> part

('Keep the spirit ', 'on', ' and on and on')

>>> s1=''.join(part)

>>> s1

'Keep the spirit on and on and on'

14. split: The method splits the strings on the given delimiter supplied as first argument. The

default is space. The method returns a list of separated words based on delimiter. The second argument

is maxsplit which specifies maximum number of splits. An important point to note that during splitting

the delimiter is removed from the string and does not become part of the returned list. Let’s understand

it using some examples:

>>> s='This is an example'

>>> s.split() # splits on space, the default delimiter

['This', 'is', 'an', 'example']

>>> s='Thisisan$example'

>>> s.split('$') # splits on ‘$’

['This', 'is', 'an', 'example']

>>> s='This is an example of split method'

>>> s.split() # splits on space and remove extra whitespace

['This', 'is', 'an', 'example', 'of', 'split', 'method']

Let’s some more example where delimiter is some word in the string:

>>> s="keep your spirit on and on and on"

>>> s.split('on')

['keep your spirit ', ' and ', ' and ', '']

>>> s='an another an example'

>>> s.split('an')

['', ' ', 'other ', ' example']

In the first example the split is done on string “on” and list of 3 strings is returned. Second example is

interesting where “an” is also in “another”. In the returned list first string is empty because of first “an”

in string s, second is space ‘ ‘ because of “an” in “another” and third one is because of “an” before

“example”.

Python Programming Simplified

200

Now let’s see how the second parameter maxsplit of split function affects the output. The default value

of this parameter is -1. See some examples:

>>> s='An example of split function'

>>> s.split(maxsplit=1)

['An', 'example of split function']

>>> s.split(maxsplit=2)

['An', 'example', 'of split function']

>>> s.split(maxsplit=3)

['An', 'example', 'of', 'split function']

>>> s.split(maxsplit=5)

['An', 'example', 'of', 'split', 'function']

>>> s.split()

['An', 'example', 'of', 'split', 'function']

>>> s.split(maxsplit=15)

['An', 'example', 'of', 'split', 'function']

Setting maxsplit=1 gives two strings in the returned list. For maxsplit=2 gives 3 strings in the returned

list. It depends upon how many occurrences of delimiter are present in the string. For a small example

string say ‘split function’ maxsplit=1 will work and any value of maxsplit more than 1 will have no

effect if length of string is less than maxsplit. Try with a long string of 10 to 15 words.

15. maketrans and translate: These two methods are very useful in programming situations

where in a given string some characters are to be replaced by some other characters and some unwanted

characters to be removed. Let’s understand both the functions.

Function maketrans takes three string as parameters: first parameter consists of string of characters

which are to replaced, second string parameter consist of those characters from which replacement is to

be done and third string parameter consist of characters in original string which are to be removed. The

function returns a table in the form of dictionary where keys are the characters to be replaced and

values are characters from which replacement is to be done. For characters that are to be deleted value

is None.

The function translate take this returned table as argument and translates the string onto which it is

called.

Let’s understand using an example:

>>> xstr='abc'

>>> ystr='xyz'

>>> zstr='d'

>>> s='aabbcda'

>>> tab=s.maketrans(xstr,ystr,zstr)

>>> tab

{97: 120, 98: 121, 99: 122, 100: None}

>>> s.translate(tab)

'xxyyzx'

Python Programming Simplified

201

Here xstr is the string containing characters to be replaced; ystr contains characters which are to be

substituted for characters in string xstr and zstr contains characters which are to be deleted. The string

we work on in this example is s=’aabbcda’. Call to function maketrans using string s passes

parameters xstr,ystr and zstr. From these passed parameters maketrans creates a dictionary table and

returns. The same is stored in variable tab.

As can be seen from the output of running tab in shell it returns a dictionary. All entries except None

are ASCII values of the characters. This can be interpreted as: character ‘a’(97) is to be replaced by

‘x’(120), character ‘b’(98) is to be replaced by ‘y’(121), character ‘c’(99) is to be replaced by ‘z’(122),

and character ‘d’ is to be removed because of None.

This dictionary table is then passed to translate function which performs translation as par table tab

and returns a new string. Original string remains unchanged.

It is also possible to do the translation without using maketrans function. We have seen that

maketrans gives us a translation table; what if we create our own translation table for replacement and

deletion of characters from original string. Let’s see how this can be done:

s=”peel on rovings”

want to replace ‘p’ by ‘k’,’l’ by ‘p’,’r’ by ‘m’ and remove ‘s’

>>>tab={ord('p'):ord('k'),ord('l'):ord('p'),ord('r'):ord('m'),ord('s'):N

one}

>>>tab

{112: 107, 108: 112, 114: 109, 115: None}

>>> s2=s1.translate(tab)

>>> s2

'keep on moving'

You can see it is possible to use translate without maketrans but its takes time to manually create the

mapping dictionary table.

The main use of translate and maketrans is in removing punctuations from a string which is required

in most programming situations. Let’s understand using an example:

>>> s='this;+$is%:an#example'

>>> tab=s.maketrans(';+$%:#',' '*6,'')

>>> tab

{59: 32, 43: 32, 36: 32, 37: 32, 58: 32, 35: 32}

>>> s1=s.translate(tab)

>>> s1

'this is an example'

>>> import re

>>> s1=re.sub(' +',' ',s1)

>>> s1

'this is an example'

In the string s we have 6 different punctuation symbols which we want to remove but removing may

remove any spacing between the words of string s. See this:

Python Programming Simplified

202

>>> tab=s.maketrans('','',';+$%:#')

>>> s.translate(tab)

'thisisanexample'

The other way to replace the punctuation symbols which we want to remove by spaces. This approach

we have followed above. But the problem with this approach is that it leaves extra spaces in between

words. To remove this we have taken help of module re (stands for regular expression). The sub

function of this module replaces one or more spaces by a single space.

16. replace: The replace method replaces one string by another string. The method takes three

arguments: old string, new string and an optional count argument. The count argument specifies how

many occurrences of old string are to be replaced by new string. By default all occurrences are

replaced.

>>> s="It is fun"

>>> s.replace("is","was")

'It was fun'

>>> s="off and off"

>>> s.replace("off","on")

'on and on'

>>> s.replace("off","on",1)# replace only first occurrence of “off”

'on and off'

>>> s="off and offer"

>>> s.replace("off","on") # embedded words are also matched

'on and oner'

The matching done by replace method is case sensitive. See an example:

>>> s.replace("OFF","on")

'off and offer'

As “OFF” is not present in string s, the original string is returned.

17. swapcase: The function as name suggests swap the cases of alphabets present in the string. See an

example:

>>> "This is An Example".swapcase()

'tHIS IS aN eXAMPLE'

>>> s="AABBccdd"

>>> s1=s.swapcase()

>>> s1

'aabbCCDD'

18 zfill: The function zfill is used for padding zeros to the left of the string. Useful in programming

situations where a binary number is to be padded or represented in a fixed length. For example, if you

number 10 and requirement is to represent this number into binary of length 16 digits. This can easily

be done using zfill. See below:

Python Programming Simplified

203

 >>> x=str(bin(10))

>>> x

'0b1010'

>>> y=x[2:].zfill(16) # x[2:] is to remove ‘0b’

>>> y

'0000000000001010'

6.10 The format method

The format method of str class has so much to offer that’s why we have devoted an entire section for

this. As the name suggest the format method does the task of formatting the output. There are number

of formatting options which you can use for various data types. The function takes variable number of

arguments and keyword arguments that act as substitution for the placeholders represented using { }.

Let’s take a simple example first:

name='chinmay'

print("Hello {}".format(name))

s="Hello {}"

print(s.format(name))

OUTPUT:
Hello chinmay

Hello chinmay

Here {} is the placeholder where the value of the variable name will be substituted. In the example two

different ways have been shown to use format method. On with string literal and another with string

variable. You can use any method which you prefer.

Lets see next example with multiple variables/literals.

print("Hello {} , you are {} years old".format("aksh",10))

print("{} plus {} is {} ".format(10,10,10+10))

a=2.3;b=3.45

print("{} x {} ={}".format(a,b,a*b))

OUTPUT:

Hello aksh , you are 10 years old

10 plus 10 is 20

2.3 x 3.45 =7.935

The two examples seen above used the concept of automatic numbering where the placeholders were

simply {}. The number of placeholders must match with the number of variables/literals in the format

function. Runtime error may ensue if the preceding line is not true.

It is also possible and useful way to provides numbers or keywords inside braces to bind them with the

positional or keyword arguments in format function. Let’s start with this in next sub section.

Python Programming Simplified

204

6.10.1 Positional Arguments in format function

The variables/literals in the format function are numbered from left to right starting from 0,1,2….The

position numbers can be placed inside the {} to clearly specify the binding of variables/literals with the

placeholders.

name='chinmay'

age=21

salary=75565.56

print("Hello{0}your age is {1} and salary is

{2}".format(name,age,salary))

Here {0} is the placeholder for name, {1} for age and {2} for salary. You cannot change this positional

numbering i.e. instead of 0,1,2 inside {} you would like to use {1},{2} and {3} then python will

generate error.

builtins.IndexError: tuple index out of range

Instead of using variables in format function you can also write literals directly:

print("Hello {0} your age is {1} and salary is {2}".format("chinmay",21,75565.56))

Further if you change the positions, nothing harms but the meaning of string changes like:

print("Hello {1} your age is {2} and salary is {0}".format("chinmay",21,75565.56))

6.10.2 Number Formatting

For formatting numbers, the format command provides number of options. All the options are listed in

the table x.1:

Table 6.2: Number formatting options in format function

Sr.No. Format symbol Meaning

1. d Decimal numbers

2. b Binary numbers

3. o Octal numbers

4. x/6 Hexadecimal numbers (lower/uppercase)

5. e/E Exponent (lower/uppercase)

6. % Multiplies the argument by 100 and put % as suffix.

7. c Converts the integer to Unicode character

8. f/F Floating point numbers (default precision is 6 digits)

Let’s understand the above format specifiers using an example:

print("decimal number {:d}".format(275))

print("float number {:f}".format(275.345))

print("Scientific notation of {0:f} is {0:E}".format(.0023))

Python Programming Simplified

205

print("octal of {0:d} is {0:o}".format(123))

print("hex of {0:d} is {0:x}".format(324))

print("Ascii of {0:c} is {0:d}".format(65))

print("My percentage={:.2f}%".format(97.6789))

OUTPUT:
decimal number 275

float number 275.345000

Scientific notation of 0.002300 is 2.300000E-03

octal of 123 is 173

hex of 324 is 144

Ascii of A is 65

My percentage=97.68%

The code is easy to interpret by seeing the output. The thing which require detail explanation is floating

point formatting. The placeholder {:0.2f}% means 2 digits after decimal point are to be displayed, %

means multiply by 100 and put a % sign after it. While displaying octal, hex or binary numbers with

prefix 0o,0x and 0b respectively, ‘#’ can be used. See an example:

print("int {0:d} is binary {0:#b}".format(45))

print("int {0:d} is octal {0:#o}".format(45))

print("int {0:d} is hex {0:#x}".format(45))

OUTPUT:
int 45 is binary 0b101101

int 45 is octal 0o55

int 45 is hex 0x2d

6.10.3 Number Padding

The format command lets you format the numbers by specifying the display width for each number. If

the display width is smaller than number of digits, the whole number is displayed (you cannot shrink

the number!). If display width is more than number of digits than extra padding is displayed in output.

This is useful for aligning the numbers of different lengths.

For integers display width can be specified by {p:wd}, where p is the position of the variable to be

formatted , w is width in decimal and d is the format specifier for integers. For example:

>>>print("{0:6d}".format(275))

 275

print("{0:06d}".format(275))

000275

The placeholder {0:6d} for number 275 assigns a width of 6 and displays number 275 from right which

takes just 3 places and remaining 3 places are left vacant. But as such these are not visible over here.

The next placeholder {0:06d} puts 0’s at the empty places from left.

Let’s see one more example in a script:

print("{0:2d}".format(12345))

print("{0:02d}".format(12345))

Python Programming Simplified

206

print("{0:012d}".format(12345))

OUTPUT:
12345

12345

000000012345

As stated earlier when display width is smaller than number of digits in number, the whole number is

displayed as it is.

We have discussed display width for integer numbers. Let’s discuss now how display width affect

formatting of floating-point numbers. The placeholder {:w.pf} reserves display width of w spaces

including one space for decimal point, p spaces for digits after floating point and remaining for digits

before floating point. For example {:010.3f} means a display width of 10 spaces, out of which 1 for

decimal point and 3 for digits after decimal point will be allocated, rest (10-(3+1))=6 will be allocated

for digits before decimal point with zero padding if require. See tiny code snippet below:

print("{:010.3f}".format(4567.89767))

print("{:010.3f}".format(234567.89767))

OUTPUT:
004567.898

234567.898

The code is easy to understand. let’s have one more example:

x=1234.567896

print("{:06.2f}".format(x))

print("{:07.2f}".format(x))

print("{:08.2f}".format(x))

print("{:09.2f}".format(x))

print("{:010.2f}".format(x))

OUTPUT:
1234.57

1234.57

01234.57

001234.57

0001234.57

The reader is encouraged to figure out the output. Zero padding has been used to clearly see the

padding done.

When dealing with signed numbers, sign can also be shown along with the numbers. Just add the +

symbol as prefix after : as shown in the example below. The + symbol tells format function to show the

sign before the number , be it +ve or -ve. See example:

print("{0:+d},{1:+d}".format(10,-12))

print("{0:+4.2f},{1:+4.2f}".format(10.34,-12.12))

OUTPUT:
+10,-12

+10.34,-12.12

Python Programming Simplified

207

We have seen the concept of padding above and its by default onto the left side of the number to be

displayed. Format function allows us to control the direction of padding too. The default is right

alignment with left padding. For that it provides some symbols that can be used for controlling

alignment. These are given in the table below:

Table 6.3: Symbols for controlling alignment

Symbol Purpose

<
Left aligned/right padding of the remaining

width

^ Center aligned of the remaining width

>
Right aligned/left padding of the remaining

width

= Sign appear left side

Let’s see an example that make use of all of the above symbols :

print("Default padding |{:6d}|".format(123))

print("Default padding with zero |{:06d}|".format(123))

print("Right padding |{:<6d}|".format(123))

print("Right padding with zero |{:<06d}|".format(123))

print("Center padding |{:^7d}|".format(123))

print("Center padding with zero |{:^07d}|".format(123))

print("With = for sign |{:=5d}|".format(-123))

print("With + for sign |{:+5d}|".format(-123))

OUTPUT:
Default padding | 123|

Default padding with zero |000123|

Right padding |123 |

Right padding with zero |123000|

Center padding | 123 |

Center padding with zero |0012300|

With = for sign |- 123|

With + for sign | -123|

Few points to observe from the above output:

(i) Right padding changes the meaning of the number.

(ii) Center padding puts number in center and fills either side with zero.

(iii) Try with even number width and odd length number.

(iii)= symbol puts sign towards left and + just before the number.

We have shown the example with integers numbers. The same can be tried with floating point numbers.

6.10.4 String Formatting

Python Programming Simplified

208

Like numbers, string can also be formatted using format function. Padding and alignment symbols

remain same for strings too. The difference is that default padding for numbers is left and right

alignment but for strings default padding is right and left alignment. Here no special character is used

for symbol. Just width is written in integer. See one example:

print("|{0:7}|".format("money"))

print("|{0:<7}|".format("money"))

print("|{0:>7}|".format("money"))

print("|{0:^7}|".format("money"))

print("|{0:$^7}|".format("money"))

OUTPUT:

|money |

|money |

| money|

| money |

|$money$|

In all print statements width is chosen as 7. First two print statement prints string as left align and right

padding. The third print statement prints string as right align with left padding. Fourth prints center

align and last one is center align with character ‘$’ filling the empty spaces.

The format function can be used to shrink the string or display only few starting characters from string.

The syntax for doing it is: {:0.n} where n is the number of characters to be extracted. The number n

must be an integer literal. See an example:

x="chinmay"

print("{:.1}".format(x))

print("{:.2}".format(x))

print("{:.3}".format(x))

print("{:.4}".format(x))

print("{:.5}".format(x))

print("{:.6}".format(x))

print("{:.7}".format(x))

OUTPUT:
c

ch

chi

chin

chinm

chinma

chinmay

Note that the above output can easily be achieved with string indexing and a for loop but here we have

used multiple lines. As stated above n cannot be a variable. Even alignment symbol can be used while

extracting starting few characters:

x="chinmay"

print("|{:>8.4}|".format(x))

Python Programming Simplified

209

print("|{:$^8.4}|".format(x))

OUTPUT:
| chin|

|$$chin$$|

6.10.5 Keyword arguments

Like positional arguments, keyword arguments can also be used with format function. This becomes

quite handy as you do not need to remember the positions. The name itself denotes the position. See a

small example:

s="Hello {name} your salary is {salary}"

print(s.format(name="chinmay",salary=76897))

s="Hello {name:.7} your salary is {salary:0.2f}"

print(s.format(name="chinmay jain",salary=76897.8978))

OUTPUT:
Hello chinmay your salary is 76897

Hello chinmay your salary is 76897.90

As you can see keyword arguments are nothing special than positional arguments. The numbers have

been replaced by names rest everything remains same.

Positional and keyword arguments can be combined too. See an example:

s="My name is {0},I live in {city}"

print(s.format("Purvi",city="Gurgaon"))

OUTPUT:
My name is Purvi,I live in Gurgaon

The keyword argument always appears later than positional arguments. If you don’t follow the above

error will be flashed by python. That is the following will result into error:

s="My name is {1},I live in {city}"

print(s.format(city="Gurgaon","Purvi"))

OUTPUT:
Syntax Error: positional argument follows keyword argument

6.11 Ponderable Points

1. Strings in Python are sequence of characters, digits, symbols enclosed within single or

double quotes.

2. For creating multiline strings just continue the string with backslash character “\”

3. Python also permits us to select a portion of a string using index as: string[start:last:step]

4. The + operator is used for string concatenation and * for string repetition.

5. String can easily be traversed character by character using loop.

6. The string object does not support item assignment as string is immutable in python.

7. String can be compared using ASCII characters and relational operators.

Python Programming Simplified

210

8. The format method is most useful method of string class.

9. All properties and methods of class string can be easily seen using dir(str)

Python Programming Simplified

211

7. LIST

7.1 Introduction

A list is a data type in python. Like string it is also a sequence of values of varied types. Elements of a

list can be of any type even another list, tuples, dictionary, or any other type of sequence. List is a

heterogeneous data structure where all the elements can be of any data type. We have seen number of

examples involving list but that was a cursory treatment. In this chapter we are going to have a deep

dive into this most powerful and useful data structure. We’ll learn how to create list, perform various

operations on list, work with various methods of list and many other stuff that can be done with list.

7.2 Creation of List

A list is created with elements placed within square brackets []. When no element is placed then list is

an empty list. A list is an ordered collection and elements can be added, removed, and modified. Thus

list is a mutable data structure/collection/type.

To create a list just put elements within square brackets.

>>> [1,2,3,12,0]

[1, 2, 3, 12, 0]

>>> ['python','java','c++']

['python', 'java', 'c++']

>>> ['python','java',12,True]

['python', 'java', 12, True]

>>> []

[]

>>> [12,34.56,'Hello',['a','b'],False]

[12, 34.56, 'Hello', ['a', 'b'], False]

First list consists of all integer, second all strings, third is a mix of data types. The fourth list is an

empty list. The final example is a list where other list is an element of the main list.

7.3 Accessing elements from list

The examples seen above in the previous section were all literals. The list can simply be assigned to

variables and manipulated. Once we have a list variable indexing can be done onto list. The first

element is at index 0, second on 1 and so on. Like string , list also supports negative indexing: last

element at index -1, second last at -2 and so on. Let’s see some examples:

>>> L=[2,12,45,12]

>>> L[0]

2

>>> L[-1]

12

>>> L=['python','java','c++']

>>> L[1]

Python Programming Simplified

212

'java'

>>> L=['python',[12,34],True]

>>> L[1]

[12, 34]

>>> L[1][0]

12

>>> S=L[1]

>>> S[0]

12

All examples are easy to understand. In the last example L[1] is a list and to access its elements we

need to perform double indexing . Even L[1] can be stored in some other variable and we have done the

same, storing it in S. Then S can be treated as another list.

An index which is not in the range of list generates error:
>>> L

['a', 'b', 'c', 'd', 'e']

>>> L[10]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> L[-6]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

7.4 List slicing

We have seen slicing of strings in the previous chapter. Slicing can also be done with the list. Just to

remind you slicing is done as: list[start:stop:step]. Default values for start=0, stop=len(list), step=1.

See some examples:

>>> L=['a','b','c','d','e']

>>> L[1:3]

['b', 'c']

Select elements from 1 to 2 (inclusive both)

>>> L[-1:-3]

[]

Empty list because default step size is 1

>>> L[-1:-3:-1]

['e', 'd']

This works as step size -1 is given

>>> L[:]

['a', 'b', 'c', 'd', 'e']

Default values of start,stop and step are taken

>>> L[::]

['a', 'b', 'c', 'd', 'e']

Default values of start,stop and step are taken

>>> L[:-1]

['a', 'b', 'c', 'd']
From index 0 to last element (non inclusive)

Python Programming Simplified

213

>>> L[::-1]

['e', 'd', 'c', 'b', 'a']

Reverse the list.

7.5 Modifying List

When we say modifying list we are concerned with addition , deletion and medication of existing

elements within the list. This is possible because list is a mutable sequence. It means that elements

within the list can be modified, new elements can be added or removed.

7.5.1 Updating List

To modify the contents without any addition or removal of new elements, just assign new item to

individual index or assign multiple items using slicing operation.

>>> L

['a', 'b', 'c', 'd', 'e']

>>> L[0]=1

>>> L[-1]=4

>>> L

[1, 'b', 'c', 'd', 4]

>>> L[2:4]=[2,3]

>>> L

[1, 'b', 2, 3, 4]

7.5.2 Adding Elements to List

To add elements to list either append or extend method can be used. The difference is that append

method can be used for adding a single element or a list but extend can be used for adding multiple

items. Let’s see example of append first.

>>> L=['a','b','c']

>>> L.append('d')

>>> L

['a', 'b', 'c', 'd']

>>> L.append('e','f')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: append() takes exactly one argument (2 given)

>>> L.append(['e','f'])

>>> L

['a', 'b', 'c', 'd', ['e', 'f']]

As can be seen from above you cannot add multiple elements to list using append method. When you

try to add a whole list to an existing list the list is added as an element and not the elements from the

list are added. The last example exemplifies this.

Let’s see examples of extend method now:

>>> L=['a','b','c']

>>> L.extend('d')

Python Programming Simplified

214

>>> L

['a', 'b', 'c', 'd']

>>> L.extend(['e','f'])

>>> L

['a', 'b', 'c', 'd', 'e', 'f']

>>> L1=[1,2,3]

>>> L.extend(L1)

>>> L

['a', 'b', 'c', 'd', 'e', 'f', 1, 2, 3]

>>> L.extend([L1])

>>> L

['a', 'b', 'c', 'd', 'e', 'f', 1, 2, 3, [1, 2, 3]]

As can be seen from above examples that using extend method single or multiple elements can be

added to an existing list. For adding a new list (as list and not element of list) to an existing list just put

the list itself in square bracket.

Another way of adding elements to list is use of + operator. The operator can be used for extending an

existing list or concatenating two lists. See some examples:

>>> L=['a','b','c']

>>> L1=['d','e']

>>> L=L+L1

>>> L

['a', 'b', 'c', 'd', 'e']

>>> L=L+['f']

>>> L

['a', 'b', 'c', 'd', 'e', 'f']

>>> L=L+['g','h']

>>> L

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

Note even for adding single element to list you must put square brackets around it as + operator is only

for concatenation of two lists only. You cannot combine list with string, integer or any other data type.

Elements can also be added to the list using the insert method. The signature of the method is:

L.insert(index, object) -- insert object before index

The method inserts object at given index. See some examples:

>>> L=[1,4,5,7,8]

>>> L.insert(1,2) # insert element 2 at index 1

>>> L

[1, 2, 4, 5, 7, 8]

>>> L.insert(2,3) # insert element 3 at index 2

>>> L

[1, 2, 3, 4, 5, 7, 8]

>>> L.insert(len(L),[9,10]) # insert at the end

>>> L

Python Programming Simplified

215

[1, 2, 3, 4, 5, 7, 8, [9, 10]]

>>> L[-1]=9

>>> L

[1, 2, 3, 4, 5, 7, 8, 9]

>>> L[4:len(L)]=[5,6,7,8]

>>> L

[1, 2, 3, 4, 5, 6, 7, 8]

The new thing you must have observed apart from insert method is replacing of elements using index

and slice notation. Single or multiple elements of list can be replaced using this notation.

7.5.3 Removing elements from list

For removing elements from list you can make use of del, remove and pop functions. Let’s understand

how to use them and how they differ ?

>>> L=[2,6,8,10,0]

>>> L.pop(2)

8

>>> L

[2, 6, 10, 0]

>>> x=L.pop(1)

>>> x

6

>>> L

[2, 10, 0]

>>> L.pop()

0

>>> L

[2, 10]

>>> L.pop(3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: pop index out of range

The pop method of list class removes the element from the list at supplied index. The signature is :

L.pop([index]) -> item -- remove and return item at index (default

last).

If no index is supplied than by default pop returns last element. If index is not between

range(0,len)than it raises error.

The other method for deleting elements from list is remove. The signature is:

L.remove(value) -> None -- remove first occurrence of value.

Python Programming Simplified

216

As can be seen from signature the method does not take index as argument instead it takes value (an

element in list) as argument and removes it from list. Further note that return type is None, it means

that removed element is not returned as it with the pop method. See some examples:

>>> L=['a','b','c','d','e']

>>> L.remove('d')

>>> L

['a', 'b', 'c', 'e']

>>> x=L.remove('b')

>>> x

>>> print(x)

None

>>> L.remove('f')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

The last method for removing elements from list is del. The method can be used to delete any variable

in the shell or python script. We take advantage of this to remove list elements. See some examples

>>> L=['a','b','c','d','e']

>>> del L[0] # remove first element ‘a’

>>> L

['b', 'c', 'd', 'e']

>>> del L[1:3] # remove elements ‘c’ ,’d’

>>> L

['b', 'e']

>>> del L[2] # index out of range

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

>>> x=10

>>> x

10

>>> del x # example of deleting variable x

>>> x

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

7.6 Operations on List

Number of operators can be applied onto list like +, *, in, not in etc. Lets understand them using some

examples:

7.6.1 Operator + with list

Python Programming Simplified

217

The + operator can be used for string concatenation as well as for concatenation of two lists . See some

examples:

>>> L=[1,2,3]+[4,5]

>>> L

[1, 2, 3, 4, 5]

>>> L=L+list(range(6,11))

>>> L

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

7.6.2 Operator * with list

The * operator works same as we have seen with string. If used as L*3 (L is a list) tt simply creates 3

copies of the list L. See some examples:

>>> L=['a','b']

>>> L*3

['a', 'b', 'a', 'b', 'a', 'b']

>>> list('aba')*2 # creates list from string and create 2 copies

['a', 'b', 'a', 'a', 'b', 'a']

>>> []*3 # no copies of empty list.

[]

>>> L[0]*3 # L[0] is string so 3 copies are created

'aaa'

>>> L[1]=10

>>> L

['a', 10]

>>> L[1]*3 # normal arithmetic multiplication

30

7.6.3 The membership operator on list

The membership operators in and not in we have discussed in chapter 2. The same works with list and

can be used to check for membership testing on list. See some examples.

>>> L=['a',2,3,'amit']

>>> 'amit' in L

True

>>> 'c' in L

False

>>> L.insert(1,['b','c'])

>>> L

['a', ['b', 'c'], 2, 3, 'amit']

>>> ['b','c'] in L

True

7.7 List traversal

Python Programming Simplified

218

List traversal means accessing each element of list exactly once and performing some operation on

them that may be display, checking for some conditions or any other which the programming problem

demands. List can be traversed easily using any loop either for or while loop . But the easiest one is

using for loop. We will show one example of list traversal using while loop and rest all examples we

will do using for loop.

7.7.1 List traversal using while loop

For list traversal using while loop we need to have the length of the list that can be obtained using len

function. Then each element of the list can be accessed using the index notation. See some examples:

Script 7.1 displaying all elements of list one by one using while

loop

L=[1,4,7,8,10]

i=0

print("List elements")

while i<len(L):

 print(L[i],end=' ')

 i=i+1

print("\nOut of loop")

OUTPUT:

List elements

1 4 7 8 10

Out of loop

The code is easy to understand. We have started from index 0 to len(L)-1 and displayed all elements of

list L using index notation L[i]. The value of i is incremented in every iteration of while loop. When

the condition i<len(L) becomes false control comes out from loop.

Let’s see one more example where we double every element of list store in new list and add 10 to every

element of list and store into new list. Thus, code generated two new list along with original list.

Script 7.2 Generating new list from existing using while loop

L=[1,4,7,8,10]

L1=[]

L2=[]

i=0

while i<len(L):

 L1.append(L[i]+10)

 L2.append(L[i]*2)

 i=i+1

print("List L=",L)

print("List L1=",L1)

print("List L2=",L2)

OUTPUT:

List L= [1, 4, 7, 8, 10]

List L1= [11, 14, 17, 18, 20]

Python Programming Simplified

219

List L2= [2, 8, 14, 16, 20]

Two new list are initialized to empty. As the list L1, L2 have zero length so you cannot assign element

to them using index notation. You’ll have to use the append method for adding element to the list. The

same we have done in first two lines of while loop. Outside the while loop we display all three list.

7.7.2 Traversing list using for loop

List traversal using for loop is the most convenient way and most python programmers often use this

method of list traversal. Let’s rewrite the same code as we have seen in the previous section using for

loop.

Script 7.3 displaying all elements of list one by one using for

loop

L=[1,4,7,8,10]

print("List elements")

for x in L:

 print(x,end=' ')

print("\nOut of loop")

OUTPUT:

List elements

1 4 7 8 10

Out of loop

As can be seen from above code you only need element in the for loop with in operator and there is no

need of index. Each time the for loop runs the loop variable x takes a new element from list L and

displays it. When list becomes empty the for loop exits.

The need of index arises only when we have to perform some modification onto list elements. Even

though we don’t need index here, the above code can also be written as (we show just changed for

loop):

for i in range(len(L)):

 print(L[i],end=' ')

Let’s write the code where we generated two list from an existing list using for loop.

Script 7.4 Generating new list from existing using for loop

L=[1,4,7,8,10]

L1=[]

L2=[]

for x in L:

 L1.append(x+10)

 L2.append(x*2)

print("List L=",L)

print("List L1=",L1)

print("List L2=",L2)

OUTPUT:

List L= [1, 4, 7, 8, 10]

Python Programming Simplified

220

List L1= [11, 14, 17, 18, 20]

List L2= [2, 8, 14, 16, 20]

As you must have noticed index notation has gone from the above code and simple for loop has

resulted into simple code.

See some new scripts that make use of for loop for list processing

simple list traversal using for loop

games=['cricket','tennis','badminton']

for game in games:

 print("I like",game)

The code is quite simple. The game variables take values from games list and print statement executes

for each element of list games.

Script 7.5 count odd and even elements in list

L=[4,5,7,9,12,3,14,89,11,10]

counteven,countodd=0,0

for x in L:

 if x%2==0:

 counteven+=1

 else:

 countodd+=1

print("Number of even elements=",counteven)

print("Number of odd elements=",countodd)

OUTPUT:

Number of even elements= 4

Number of odd elements= 6

The code finds count of odd and even elements of the list. For this we have taken two variables

counteven and countodd and initialized them to 0. The list is traversed using for loop and each element

is examined for even or odd. The corresponding variable is incremented. Outside the loop we display

the count using print statement.

What if in the above code we want to separate the odd and even elements into new list and destroy the

original list? Let’s see how to do this:

Script 7.6 Separating odd and even elements and removing original

#list

L=[4,5,7,9,12,3,14,89,11,10]

evenL=[];oddL=[]

for x in L:

 if x%2==0:

 evenL.append(x)

 else:

 oddL.append(x)

del L

Python Programming Simplified

221

print("Even elements List=",evenL)

print("Odd elements List=",oddL)

OUTPUT:

Even elements List= [4, 12, 14, 10]

Odd elements List= [5, 7, 9, 3, 89, 11]

We have created two empty list oddL and evenL. The list is traversed using for loop. If it is even

element than it is appended into evenL list else it is appended into oddL list. Outside the for loop the

original list is deleted.

In final script we process a list of strings and check whether they are palindrome or not. A palindrome

string is same on reversal.

Script 7.7 Checking string for palindrome

def palindrome(s):

 s1=s[::-1]

 if s==s1:

 return True

 else:

 return False

L=['peep','novia','keep','maam','malayalam']

for x in L:

 if palindrome(x):

 print(x,"is palindrome")

 else:

 print(x,"is not palindrome")

OUTPUT:

peep is palindrome

novia is not palindrome

keep is not palindrome

maam is palindrome

malayalam is palindrome

For checking string is palindrome or not we have written a function palindrome that reverses a string

and compare it with original. If both strings are same than True is returned from function else False is

returned from function. In the main function the list is processed using for loop and every list element

is passed to palindrome function that tells whether string is palindrome or not. This is checked in if

block and corresponding result is displayed.

7.8 Other List methods

This section discusses some other list methods that we have not covered so far. Let’s discuss them one

by one.

7.8.1 The copy method

Python Programming Simplified

222

The copy method makes a copy of the list on which it is called upon. The reason we would like to use

copy method on number of occasions is that merely copying one list to another using assignment

operators creates a reference and not a copy. See this:

>>> L=[2,4,7,9,1]

>>> L1=L

>>> L1[0]=34

>>> L

[34, 4, 7, 9, 1]

>>> L1.pop(2)

7

>>> L

[34, 4, 9, 1]

When you write L1=L, a new reference of L is created, and all changes done onto list either by L or by

L1 seen by both. To avoid this, we can create a copy of L and assign to L1 so operations performed on

L will have no effect on L1 and vice versa.

>>> L

[34, 4, 9, 1]

>>> L1=L.copy()

>>> L1[0]='changed'

>>> L

[34, 4, 9, 1]

>>> L1

['changed', 4, 9, 1]

>>> L==L1

False

>>> L2=L

>>> L==L2

True

The other way to make a copy of the list is by using L1=L[:].

7.8.2 The sort method

The sort sorts the elements of the string in place. It means original list is modified. Because of in place

sorting the function returns None. So in case you want to keep the original unsorted list intact better

make a copy of the list.

>>> L=[2,3,12,1,15]

>>> L.sort()

>>> L

[1, 2, 3, 12, 15]

>>> L=[2,3,12,1,15]

>>> L1=L.sort()

>>> print(L1)

None

>>> L

Python Programming Simplified

223

[1, 2, 3, 12, 15]

>>> L=[2,3,12,1,15]

>>> L.sort(reverse=True)

>>> L

[15, 12, 3, 2, 1]

Setting reverse keyword parameter to True in sort function sorts the elements in descending order.

7.8.3 The clear and count method

The clear method clears the list and make it empty. The count method counts occurrences of any

specific element passed as argument. Returns 0 if element is not in list. See examples of both:

>>> L=list('positive')

>>> L.count('i')

2

>>> L

['p', 'o', 's', 'i', 't', 'i', 'v', 'e']

>>> L.clear()

>>> L

[]

>>> L=list('positive')

>>> L.count('x')

0

7.9 General methods applied on list

There are number of predefined functions into the builtins modules that can be used to work with list.

In this section we are going to look at all those functions, so you can use them directly without writing

any explicit function for that.

7.9.1 The max,min,sum functions

The functions max, min and sum finds maximum, minimum and sum of all elements of list

respectively. See the examples:

>>> L=[2,5,8,11,34,78]

>>> max(L)

78

>>> min(L)

2

>>> sum(L)

138

>>> L=['a','c','b']

>>> max(L)

'c'

>>> min(L)

Python Programming Simplified

224

'a'

>>> sum(L)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

7.9.2 The all and any function

The function all returns true if all the elements of the list are nonzero or True else the function returns

False. The any function returns True when any element of the list is True. It returns false only when all

the elements of the list are zero. See examples:

>>> L=[2,5,8,11,34,78]

>>> all(L)

True

>>> L=[0,0,0,3]

>>> all(L)

False

>>> any(L)

True

>>> L=[0,0,0,0]

>>> any(L)

False

>>> L=[False,True]

>>> all(L)

False

>>> any(L)

True

7.9.3 The sorted method

The sorted method like sort method of list class also does sorting. The difference between sort and

sorted is that sorted does not do in place sorting instead it returns a newly sorted list keeping original

list intact. See examples:

>>> L=[12,5,18,1,3,7]

>>> sorted(L)

[1, 3, 5, 7, 12, 18]

>>> L1=sorted(L)

>>> L1

[1, 3, 5, 7, 12, 18]

>>> L

[12, 5, 18, 1, 3, 7]

7.9.4 The enumerate method

Python Programming Simplified

225

The enumerate method returns a list of tuples where every tuple has two values: the first is index and

corresponding element at that index. The index is not the actual index of the element in the list and can

be changed during display. By default, it is 0. See some examples:

>>> L1=['juhi','akshay','namit']

>>> enum=enumerate(L1)

>>> enum

<enumerate object at 0x000001A11EEB6438>

>>> L=list(enum)

>>> L

[(0, 'juhi'), (1, 'akshay'), (2, 'namit')]

>>> enum=enumerate(L1,10)

>>> list(enum)

[(10, 'juhi'), (11, 'akshay'), (12, 'namit')]

The enumerate function returns an object that needs to be converted into list using list function. As can

be seen from the output the list L contains list of tuples where second element of tuple is corresponding

element from the list. In the next example we have passed second parameter as 10 so now first element

of the returned list has index at 10.

As the returned value of enumerate is a list of tuples it can easily be processed using for loop. See an

example:

In Shell

>>> L1=['juhi','akshay','namit']

>>> for index,name in enumerate(L1):

... print(index,'==>',name)

...

0 ==> juhi

1 ==> akshay

2 ==> namit

The enumerate(L1) returns [(0, 'juhi'), (1, 'akshay'), (2, 'namit')]. First time when for loop runs index

has value 0 and name has ‘juhi’, second time index takes 1 and names takes ‘akshay’ and so on.

Script 7.8 enumerate function in action
L1=['juhi','akshay','namit']

for index,name in enumerate(L1):

 print(index,'==>',name)

OUTPUT:
0 ==> juhi

1 ==> akshay

2 ==> namit

7.10 List Input

Python Programming Simplified

226

In all the earlier sections we have initialized the list directly or statically. There are occasions where

you want to take input from files or keyboard (standard input). Files we will cover later in this book.

But here we see how to assign elements to list using keyboard input.

Let’s write a simple code to take float inputs from users and append into an empty list. Later we find

maximum, minimum and sum of all elements of the list.

Script 7.9 List input demonstration from keyboard version 1

L=list()

while(True):

 x=float(input('Enter a float,-99 to stop\n'))

 if x==-99:

 break

 L.append(x)

print("List L=",L)

print("max element=",max(L))

print("min element=",min(L))

print("sum of all elements=%5.2f"%(sum(L)))

OUTPUT:

Enter a float,-99 to stop

2.4

Enter a float,-99 to stop

3.4

Enter a float,-99 to stop

5.4

Enter a float,-99 to stop

-99

List L= [2.4, 3.4, 5.4]

max element= 5.4

min element= 2.4

sum of all elements=11.20

The loop runs infinite times because of while(True). The loop asks for float number to be entered by

the user for indefinite number of times. To stop user enters -99. Every element entered by user is

appended into the list L except -99. When control comes out from loop than we display the whole list,

maximum, minimum element of the list and sum of all elements of the list.

If you decide to input a fixed number of elements, the same you can ask from user and run a loop for

that number of time. See the below script:

Script 7.10 List input demonstration from keyboard version 2

L=list()

n=int(input('Enter how many elements\n'))

for i in range(n):

 x=float(input("Enter float element no."+str(i+1)+"\n"))

 L.append(x)

print("List L=",L)

print("max element=",max(L))

print("min element=",min(L))

print("sum of all elements=%5.2f"%(sum(L)))

Python Programming Simplified

227

OUTPUT:

Enter how many elements

4

Enter float element no.1

2

Enter float element no.2

4

Enter float element no.3

5

Enter float element no.4

7

List L= [2.0, 4.0, 5.0, 7.0]

max element= 7.0

min element= 2.0

sum of all elements=18.00

What if you want to add different types of elements taken from user ? This will create problem as input

method reads all input as string. Later you can convert them into corresponding type. One thing we will

have to make sure that user enters correct type of element else runtime error will occur. Let’s see how

this can be done? Let’s write the script

Script 7.11 Converting data types of list elements

import ast

dtype=['int','string','bool','list']

L=list()

for x in range(len(dtype)):

 x=input('Enter '+dtype[x]+' element\n')

 L.append(x)

print("Simple input=",L)

for i in range(len(L)):

 if dtype[i]=='int':

 L[i]=int(L[i])

 elif dtype[i]=='bool':

 L[i]=bool(L[i])

 elif dtype[i]=='list':

 L[i]=ast.literal_eval(L[i])

print("After converting=",L)

OUTPUT:

Enter int element

23

Enter string element

cool

Enter bool element

True

Enter list element

[3,4]

Simple input= ['23', 'cool', 'True', '[3,4]']

After converting= [23, 'cool', True, [3, 4]]

Python Programming Simplified

228

We have a list dtype where few data types are written in string form. This list we use for reading a

specific type of element from the user. Each such element is stored at same index in the list L. This

means that as index of ‘int’ in dtype is 0 so integer is stored at index 0 in L. We assume that when we

ask for integer , user enters integer and not any other type. Erroneous input can be handled using

exception handling mechanism that we will see later in this book.

We have taken element of each data type from user and stored in list L but all are in string form. After

all elements have been appended into list L, the list L is traversed again and every element is

converted into its real type i.e. ‘True’ is converted from string to bool, ‘23’ is converted from string to

integer and so on.

Finally to wrap up this section lets use function eval that can be used to take all elements of a list at

once from user:

L=eval(input("Enter elements: "))

print(L)

OUTPUT:
Enter elements : 4,5,6,7,12,True,"demo",[4,5]

(4, 5, 6, 7, 12, True, 'demo', [4, 5])

As you can see from the above code,using eval function you can input any type of elements at once

into list but they all must be separated by comma. Not just list even tuple , dictionary or set can also be

input using eval method.

7.11 List and Functions

As we pass simple types like integer, float , string to functions, list can also be passed to functions.

Whenever a list is passed to function it is passed by reference. The concept of this we have seen in

copy function. As a reference of list is passed to the function , the changes performed inside the

function onto list are visible outside the list. Let’s start with a simple example.

Script 7.12 demo of passing list to function

def demo(Lf):

Lf[0]='modified'

L=[1,'hello',23]

print("List before function call=",L)

demo(L)

print("List after function call=",L)

OUTPUT:

List before function call= [1, 'hello', 23]

List after function call= ['modified', 'hello', 23]

As can be seen from the above code the first element of the passed list is modified in the function demo

and same affects the original list. Here L is our actual parameter and Lf is formal parameter.

Python Programming Simplified

229

In the above we saw an example of passing list as an argument to function. We can also return a list

from a function. Let’s see with an example:

Script 7.13 Removing first element of list

def removefirst(Lf):

return Lf[1:]

L=[1,'hello',23]

print("Original list=",L)

L1=removefirst(L)

print("List with first element removed=",L1)

OUTPUT:

Original list= [1, 'hello', 23]

List with first element removed= ['hello', 23]

The first element of the list is at index 0, so we return the list starting with index 1 to the end of the list.

This returned list is stored in L1 in the main function. The output clearly justifies what i’ve said in

previous lines.

But the inquisitive mind can figure out that same code can be written without returning list from

function. Yes ! But it creates some problem. Let’s see about this:

def removefirst(Lf):

Lf=Lf[1:]

L=[1,'hello',23]

print("List L=",L)

removefirst(L)

print("List with head removed =",L)

OUTPUT:

List L= [1, 'hello', 23]

List with first element removed = [1, 'hello', 23]

The issue with the code is that slice operation on list creates a new list and does not return the reference

of original list. That’s why the Lf that is in function argument list and Lf in first line of function

removefirst are two different list. To prove what I just said, we uses id function in removefirst and

compare the ids of two Lf. Let’s see this modified code (only for purpose of id comparison)

def removefirst(Lf):

 print(id(Lf))

 Lf=Lf[1:]

print(id(Lf))

L=[1,'hello',23]

print("List L=",L)

removefirst(L)

print("List with first element removed =",L)

OUTPUT:

List L= [1, 'hello', 23]

Python Programming Simplified

230

2429924851976

2429924851848

List with first element removed = [1, 'hello', 23]

As you can see, the id of two Lf are different. It means they represent two different list and not just two

references pointing to same list.

Continuing with the above we write one more function to remove last element of the list and then we

combine the two functions to remove first and last element of the list.

Script 7.14 Removing last element of the list

def removelast(Lf):

 return Lf[:-1]

L=[1,'hello',23]

print("List L=",L)

L1=removelast(L)

print("List with last element removed =",L1)

OUTPUT:

List L= [1, 'hello', 23]

List with last element removed = [1, 'hello']

To remove the last element start with 0 as first index (which is default) and set last index is -1 (signifies

index of last element) . Let’s combine the two to remove both first and last element of the list.

def removeFirstLast(Lf):

return Lf[1:-1]

L=[1,'hello',23]

print("List L=",L)

L1=removeFirstLast(L)

print("List with first n last element removed =",L1)

OUTPUT:

List L= [1, 'hello', 23]

List with first n last element removed = ['hello']

It’s quite easy to understand the function removeFirstLast. Now if want to combine the previous two

functions in a new function you can do as (bit lengthy and require three functions !)

def removeFirstLast(Lf):

 return removeFirst(removeLast(Lf))

def removeFirst(Lf):

 return Lf[1:]

def removeLast(Lf):

 return Lf[:-1]

L=[1,'hello',23]

print("List L=",L)

L1=removeFirstLast(L)

print("List with first n last element removed =",L1)

Python Programming Simplified

231

7.12 List Comprehension

List comprehension is a python way to make a new list by applying an expression to every element in a

sequence for example list or string. They make use of for loop and some expression. Following for, you

can also have some if clauses. The output of the list comprehension is a new list obtained by for loop

and if clauses (optional). The general syntax is :

newlist= [expression for element in list if condition]

The for loop and if conditions can be more than one depending upon what you want to achieve with list

comprehension.

They are undoubtedly resulting in much simpler code and quite easy. Lets understand with a simple

example where we want to square each element of an integer list. Without list comprehension the code

will be:

L=list(range(1,11))

L1=[]

for i in range(len(L)):

 L1.append(L[i]*L[i])

print(L1)

With list comprehension the code can be shortened as:

L=list(range(1,11))

L1=[x*x for x in L]

print(L1)

The second line in the code is list comprehension. The expression is written first and for loop later. The

whole is put inside square brackets. See how easy is to use list comprehension in python. Lets see some

more example:

We want to generate a list of random integers between 1 and n and then separate them into odd and

even number list as we have seen earlier. But this time we do using list comprehension.

Script 7.15 Even odd separation using list comprehension
import random

L=[random.randint(1,30) for i in range(10)]

LE=[x for x in L if x%2==0]

LO=[x for x in L if x%2!=0]

print("Main List=",L)

print("Even List=",LE)

print("Odd List=",LO)

OUTPUT:
Main List= [30, 7, 5, 26, 17, 24, 7, 5, 18, 22]

Even List= [30, 26, 24, 18, 22]

Odd List= [7, 5, 17, 7, 5]

Python Programming Simplified

232

The module random has a randint function to generate random integer between given range a and b

(inclusive both). Here we generate 10 random numbers between 1 and 30 and store in list L. Than using

list comprehension we store the even and odd elements of the list into new lists.

Like if, if-else can also be used inside list comprehension. The general syntax is:

[expression if condition else expression for item in list]

See an example where the list is elements containing random values between 1000 for all values greater

than 5000 in a list we add 15% of value when value is >=5000 and 10% of value when value is less

than 5000. The values can be treated as salary of workers.

Script 7.16 Random salary and bonus using list comprehension

import random

L=[random.randint(1000,10000) for i in range(10)]

print("Salary without bonus=",L)

L1=[round(x*1.15) if x>=5000 else round(x*1.10,2) for x in L]

print("Salary with bonus=",L1)

OUTPUT:
Salary without bonus= [7986, 8830, 7467, 5457, 3313, 3468, 5823, 5484,

8641, 2197]

Salary with bonus= [9184, 10154, 8587, 6276, 3644.3, 3814.8, 6696, 6307,

9937, 2416.7]

As you can see from the above code the list comprehension makes the code easy and compact.

Functions can also be used for processing of list elements. We write a function bonus that takes

salary from the list L and calculated the salary with bonus using the condition as discussed above.

import random

L=[random.randint(1000,10000) for i in range(10)]

def bonus(sal):

 if sal>=5000:

 return round(sal*1.15,2)

 else:

 return round(sal*1.10,2)

L1=[bonus(sal) for sal in L]

print("Salary without bonus=",L)

print("Salary with bonus=",L1)

OUTPUT:
Salary without bonus= [5426, 9141, 7799, 4255, 9015, 3124, 6593, 4460,

7214, 9522]

Salary with bonus= [6239.9, 10512.15, 8968.85, 4680.5, 10367.25, 3436.4,

7581.95, 4906.0, 8296.1, 10950.3]

In line L1=[bonus(sal) for sal in L] we apply function bonus on every element sal of the list

L. The function returns the salary with bonus calculated as discussed above.

Python Programming Simplified

233

Let’s write one more function where we filter out only prime elements from a list. For that we write a

function that checks number is prime or not and returns True or False accordingly.

Script 7.17 Prime number checking using list comprehension
import random

L=[random.randint(1,50) for i in range(10)]

def prime(n):

 flag=True

 for c in range(2, n//2+1):

 if n%c==0:

 flag=False

 break

 return flag

PL=[x for x in L if prime(x)]

print("Original List=",L)

print("Prime List=",PL)

OUTPUT:
Original List= [46, 19, 38, 20, 11, 33, 41, 36, 18, 35]

Prime List= [19, 11, 41]

We randomly generated 10 numbers between 1 and 50 and checked for primeness of every element of

the generated list. The logic for prime numbers was discussed in chapter 5: Functions.

List comprehension can also be done with multiple list. Let’s see one example where every element of

both the list is added at same index.

Script 7.18 List comprehension with multiple list ver 1
import random

L1=[random.randint(1,30) for i in range(5)]

L2=[random.randint(1,30) for i in range(5)]

print("Zipped List=",list(zip(L1,L2)))

SUML=[x+y for x,y in zip(L1,L2)]

print("Original List L1=",L1)

print("Original List L2=",L2)

print("Sum of two List=",SUML)

OUTPUT:
Zipped List= [(29, 3), (4, 17), (13, 5), (12, 30), (26, 27)]

Original List L1= [29, 4, 13, 12, 26]

Original List L2= [3, 17, 5, 30, 27]

Sum of two List= [32, 21, 18, 42, 53]

The zip function returns a list of tuples or pairs. It takes more than one list as argument and combine

the elements at same index. This is the first line of the output. In list comprehension every pair is

picked up and its elements are copied into x and y. For performing sum the list comprehension can also

be written as:

SUML=[sum(pair) for pair in zip(L1,L2)]

A little change and we can find maximum of elements at same index position among two list.

Python Programming Simplified

234

Script 7.19 List comprehension with multiple list ver 2

import random

L1=[random.randint(1,30) for i in range(5)]

L2=[random.randint(1,30) for i in range(5)]

print("Zipped List=",list(zip(L1,L2)))

MAX=[x if x>y else y for x,y in zip(L1,L2)]

print("Original List L1=",L1)

print("Original List L2=",L2)

print("Sum of two List=",MAX)

OUTPUT:
Zipped List= [(3, 27), (12, 28), (12, 21), (7, 2), (27, 30)]

Original List L1= [3, 12, 12, 7, 27]

Original List L2= [27, 28, 21, 2, 30]

Sum of two List= [27, 28, 21, 7, 30]

List comprehension can also be done with multiple for loops. This is equivalent to nesting of two

or more for loops. Let’s understand it with an example. This time we work with list of strings and find

out a new list with common names in both the list.

Script 7.20 List comprehension with two for loops
import random

L1=['jiya','anu','lavi','piya','pari']

L2=['pari','chinu','jiya','piya']

COM=[x for x in L1 for y in L2 if x==y]

print("Original List L1=",L1)

print("Original List L2=",L2)

print("Common names list=",COM)

OUTPUT:
Original List L1= ['jiya', 'anu', 'lavi', 'piya', 'pari']

Original List L2= ['pari', 'chinu', 'jiya', 'piya']

Common names list= ['jiya', 'piya', 'pari']

The list comprehension is equivalent to :

COM=[]

for x in L1:

 for y in L2:

 if x==y:

 COM.append(x)

Let’s take one last example with 3 lists. We try to find out if sum of any element in the two list is equal

to any element in the third list.

Script 7.20 List comprehension with two for loops

import random

L1=[random.randint(1,10) for i in range(10)]

L2=[random.randint(1,10) for i in range(10)]

L3=[random.randint(1,20) for i in range(10)]

Res=[(x,y,z) for x in L1 for y in L2 for z in L3 if x+y==z]

print("Original List L1=",L1)

Python Programming Simplified

235

print("Original List L2=",L2)

print("Original List L3=",L3)

print("Result List=",Res)

OUTPUT:

Original List L1= [7, 3, 7, 1, 7, 5, 5, 7, 9, 6]

Original List L2= [5, 10, 2, 10, 6, 5, 4, 1, 1, 4]

Original List L3= [7, 6, 2, 1, 2, 8, 20, 11, 8, 13]

Result List= [(7, 6, 13), (7, 4, 11), (7, 1, 8), (7, 1, 8), (7, 1, 8),

(7, 1, 8), (7, 4, 11), (3, 5, 8), (3, 5, 8), (3, 10, 13), (3, 10, 13), (3,

5, 8), (3, 5, 8), (3, 4, 7), (3, 4, 7), (7, 6, 13), (7, 4, 11), (7, 1, 8),

(7, 1, 8), (7, 1, 8), (7, 1, 8), (7, 4, 11), (1, 5, 6), (1, 10, 11), (1,

10, 11), (1, 6, 7), (1, 5, 6), (1, 1, 2), (1, 1, 2), (1, 1, 2), (1, 1, 2),

(7, 6, 13), (7, 4, 11), (7, 1, 8), (7, 1, 8), (7, 1, 8), (7, 1, 8), (7, 4,

11), (5, 2, 7), (5, 6, 11), (5, 1, 6), (5, 1, 6), (5, 2, 7), (5, 6, 11),

(5, 1, 6), (5, 1, 6), (7, 6, 13), (7, 4, 11), (7, 1, 8), (7, 1, 8), (7, 1,

8), (7, 1, 8), (7, 4, 11), (9, 2, 11), (9, 4, 13), (9, 4, 13), (6, 5, 11),

(6, 2, 8), (6, 2, 8), (6, 5, 11), (6, 1, 7), (6, 1, 7)]

Its quite obvious from the output that nesting of three for loops in our list comprehension have resulted

in total execution of if condition 10*10*20 times and have generated lots of triplets tuples having sum

of first two elements is equal to third element. But the resultant list contains lots of duplicate tuples. To

remove them and keep the list as list , what we can do is to convert the list into set (set can only have

unique elements) and convert back to list. Just add one line in the code above as:

import random

L1=[random.randint(1,10) for i in range(10)]

L2=[random.randint(1,10) for i in range(10)]

L3=[random.randint(1,20) for i in range(10)]

Res=[(x,y,z) for x in L1 for y in L2 for z in L3 if x+y==z]

Res=list(set(Res))
print("Original List L1=",L1)

print("Original List L2=",L2)

print("Original List L3=",L3)

print("Result List=",Res)

OUTPUT:
Original List L1= [9, 1, 2, 10, 4, 9, 7, 4, 6, 1]

Original List L2= [9, 9, 10, 2, 9, 4, 10, 2, 2, 10]

Original List L3= [9, 2, 6, 12, 17, 15, 10, 17, 11, 2]

Result List= [(7, 2, 9), (6, 4, 10), (4, 2, 6), (7, 4, 11), (2, 10, 12),

(2, 4, 6), (6, 9, 15), (1, 9, 10), (1, 10, 11), (7, 10, 17), (10, 2, 12),

(2, 9, 11), (9, 2, 11)]

7.13 Ponderable Points

1. A list is a mutable data type in python.

2. List indexing using [] operator with first element at index 0 and last element at -1.

3. Updation, insertion, deletion, appending all types of operations can be performed on list.

4. Operators +, * and membership operators can be used with list.

5. List can be easily traversed using any loop but for loop is preferred.

6. List has number of methods to use in any programming situations.

Python Programming Simplified

236

7. Like other data types list can be passed to functions and returned also.

8. General syntax for list comprehension is: newlist= [expression for element in list if condition]

Python Programming Simplified

237

8. Dictionary

8.1 Introduction

A dictionary is a collection of key-value pair. Here key means index and value means value at the given

index. Unlike list the index can be anything in dictionary. It can be integer, string or any other object.

The dictionary is an unordered, mutable collection. The dictionary can be thought of mapping from

keys to values. Every key is mapped to some value. This pair of key-value is treated as one element or

item of the dictionary. The good thing about dictionary and its usefulness in number of programming

situations is searching for an element through key. You just need to remember the key and dictionary

will return the value associated with the key. The keys for the dictionary must be immutable and cannot

be repeated. That is keys must be unique and nonmodifiable. The values can be repeated.

8.2 Creating Dictionaries

The dictionary in python can be easily created with curly braces { } or using built-in function dict().

Let’s see how to create an empty dictionary.

>>> x={}

>>> type(x)

<class 'dict'>

>>> x=dict()

>>> type(x)

<class 'dict'>

The key value pairs can be added to an empty dictionary as:

dictionaryname[key]=value

Let’s add some items into the empty dictionary created above:

>>> x[1]='one'

>>> x[2]='two'

>>> x[5]='five'

>>> x

{1: 'one', 2: 'two', 5: 'five'}

As you can see from above 3 items have been added to the dictionary x with key written in square

brackets and value assigned at that key using assignment operator. To display the dictionary just write

the dictionary name at the shell prompt. The dictionary can be created also in just one single line as:

>>> x={1:'one',2:'two',3:'three'}

>>> x

{1: 'one', 2: 'two', 3: 'three'}

Python Programming Simplified

238

Another ways to create dictionary is to have a list of key-value pair in the form of a tuple. See an

example:

>>> x=dict([(1,'one'),(2,'two'),(3,'three')])

>>> x

{1: 'one', 2: 'two', 3: 'three'}

An example of dictionary with strings as keys is given below:

>>> d={'name':'pihu','age':'18','sex':'female'}

>>> d

{'name': 'pihu', 'age': '18', 'sex': 'female'}

Another way to write the above one is using keyword argument.

d=dict(name='pihu',age='18',sex='female')

Even though the preceding dictionary creation syntax is quite easy but for accessing values of an

individual item , the key must be placed in single or double quotes. See the error caused:

>>> d[name]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'name' is not defined

To correct the above use as:

>>> d['name']

'pihu'

The value for a key can also be a list. For example in the above if we want to add a new key sports a

person like with more than one option can be added as:

>>> d['sports']=['cricket','tennis','soccer']

>>> d

{'name': 'pihu', 'age': '18', 'sex': 'female', 'sports': ['cricket',

'tennis', 'soccer']}

A dictionary can also be a dictionary for a given key. This is nesting of dictionary. Let’s see how to do

this. We add new key in the above dictionary:

>>> d['address']={'colony':'bank colony','hno':'b-62','city':'ajmer'}

Here the address key’s value is a dictionary. To access individual key inside this dictionary (which is a

value) we need to perform two way indexing. Left one is for main dictionary and right for dictionary as

value:

>>> d['address']['city']

'ajmer'

8.2.1 Restriction on keys

Python Programming Simplified

239

There is some restriction on the type of keys that can be used while creating dictionaries in python.

Only types that are immutable can be used as keys. We know that string, numbers, tuples are

immutable data types in python so they can be used as keys. Mutable types like list and sets cannot be

used as keys. If you try to do so error is flashed. See some examples

>>> d={[1,2]:'one two'}

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>> d={{2,3}:'one two'}

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

>>> d={(1,2):'one two'}

>>> d[(1,2)]

'one two'

8.3 Accessing elements

The dictionary elements are accessed by simply providing their key as index. The other way is to use

get method. Both are discussed here. Assuming dictionary d from previous section still exist in our

python shell:

>>> d['name']

{'first': 'pari', 'last': 'jain'}

>>> d.get('name')

{'first': 'pari', 'last': 'jain'}

>>> d['age']

'18'

>>> d.get('name')['first']

'pari'

>>> d['name']['first']

'pari'

What if you try to access an item in the dictionary whose key is not present ? An error is generated:

>>> d['job']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'job'

>>> d.get('job')

>>> print(d.get('job'))

None

Python Programming Simplified

240

The get method returns None and does not generate any error when key is not present in dictionary.

The None was displayed only when we used print statement. To avoid this , the get method also takes

an additional argument which is returned only when key is not present. See few examples:

>>> d={1:98.3,2:95.4,3:95.4}

>>> d.get(4)

>>> d.get(4,'key does not exist')

second argument used when key is not present

'key does not exist'

>>> d.get(4,0)

0

>>> d.get(1,0)

98.3

8.4 Adding and Modifying elements in Dictionary

We have seen earlier that a new element can be added to the dictionary just by adding key and value as:

Dname[key]=value

And we have seen number of examples of this earlier. To modify the elements just change the value at

key . See some examples:

>>> d={1:'puru',3:'luv',5:'kuhu'}

>>> d

{1: 'puru', 3: 'luv', 5: 'kuhu'}

>>> d[4]='riya'

>>> d[1]='pari'

>>> d

{1: 'pari', 3: 'luv', 5: 'kuhu', 4: 'riya'}

8.5 Removing elements from dictionary

For removing items from dictionary three methods can be used: pop, popitem and del. The pop

method’s signature is as follows:

D.pop(k[,d]) -> v,

Here D is the dictionary object, k is the key , v is the corresponding value at key k and d is any type

value which is returned when key is not found. This type value d is optional. When key is not present in

dictionary and d is not specified then KeyError is raised. See some examples:

>>d={1: 'pari', 3: 'luv', 5: 'kuhu', 4: 'riya'}

>>> d.pop(1)

'pari'

>>> d

{3: 'luv', 5: 'kuhu', 4: 'riya'}

Python Programming Simplified

241

>>> d.pop(2,'Key not found')

'Key not found'

>>> d.pop(5,'Key not found')

'kuhu'

>>> d.pop(5)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 5

The popitem method returns any randomoly chosen values from the dictionary. The order does not

matter here. It is quite useful when you have to delete an entry from dictionary regardless of any key.

The method errors only when dictionary has no items. See some examples:

>>> d={3:'aa',4:'bb',1:'cc'}

>>> d

{3: 'aa', 4: 'bb', 1: 'cc'}

>>> d[2]='dd'

>>> d

{3: 'aa', 4: 'bb', 1: 'cc', 2: 'dd'}

>>> d.popitem()

(2, 'dd')

>>> d.popitem()

(1, 'cc')

>>> d.popitem()

(4, 'bb')

>>> d.popitem()

(3, 'aa')

>>> d.popitem()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'popitem(): dictionary is empty'

The other way of deleting items from the dictionary is del command. The del command can be used to

delete an item from dictionary or entire dictionary. See some examples:

>>> d={3:'aa',4:'bb',1:'cc'}

>>> del d[4]

>>> d

{3: 'aa', 1: 'cc'}

>>> del d[2]

Python Programming Simplified

242

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 2

>>> del d

>>> d

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'd' is not defined

The final method for removing items from dictionary is clear that removes every item from dictionary

and make it empty.

>>> d={3:'aa',4:'bb',1:'cc'}

>>> d.clear()

>>> d

{}

8.6 Traversing Dictionaries

The dictionary can be easily traversed using for loop. The methods keys, values, items are of

importance while traversing dictionary in python. Let’s first see these methods.

>>> d={3:'aa',4:'bb',1:'cc'}

>>> d.keys()

dict_keys([3, 4, 1])

>>> d.values()

dict_values(['aa', 'bb', 'cc'])

>>> d.items()

dict_items([(3, 'aa'), (4, 'bb'), (1, 'cc')])

The keys method returns a list of all keys of dictionary on which it is applied. The values returns a list

of all values of dictionary on which it is applied. The items method returns a list of all tuples in the

form of key-value pair.

Now see how can we traverse a dictionary. Let’s define a dictionary students where key is student

name and value is their aggregate percentage.

 >>> students={'pari':98,'koyal':93,'mouni':93.5,'lavi':94}

>>> for name,per in students.items():

... print(name," has got ",per,'%')

...

pari has got 98 %

koyal has got 93 %

mouni has got 93.5 %

Python Programming Simplified

243

lavi has got 94 %

The above code we have written in python shell. The same can be written as a script:

students={'pari':98,'koyal':93,'mouni':93.5,'lavi':94}

for name,per in students.items():

 print(name,"has got",per,'%')

OUTPUT:

pari has got 98 %

koyal has got 93 %

mouni has got 93.5 %

lavi has got 94 %

I discussed the methods keys() and values() above. Let’s use them here:

>>> students.values()

dict_values([98, 93, 93.5, 94])

>>> students.keys()

dict_keys(['pari', 'koyal', 'mouni', 'lavi'])

The above traversal of dictionary items can also be done using the keys() methods . For every key in

keys list we can find the value as: students[key]. This is what we have done in the following modified

script:

students={'pari':98,'koyal':93,'mouni':93.5,'lavi':94}

for key in students.keys():

 print(key,"has got",students[key],'%')

The output remains same.

8.7 Methods of Dictionary class

Number of methods of dictionary class we have seen in previous sections. Here we discuss the

remaining methods that are important and frequently used.

1. Copy method

 References of a dictionary can be created and original dictionary can be easily modified using

the reference. See this:

>>> students

{'pari': 98, 'koyal': 93, 'mouni': 93.5, 'lavi': 94}

>>> s1=students

>>> s1

{'pari': 98, 'koyal': 93, 'mouni': 93.5, 'lavi': 94}

>>> s1['pari']=99

>>> students

Python Programming Simplified

244

{'pari': 99, 'koyal': 93, 'mouni': 93.5, 'lavi': 94}

To prevent this a copy of the original dictionary can be created and operations performed on copied

dictionary does not affect the original dictionary. See an example:

>>> students

{'pari': 99, 'koyal': 93, 'mouni': 93.5, 'lavi': 94}

>>> s1=students.copy()

>>> s1['mouni']=97

>>> students

{'pari': 99, 'koyal': 93, 'mouni': 93.5, 'lavi': 94}

>>> s1

{'pari': 99, 'koyal': 93, 'mouni': 97, 'lavi': 94}

2.update method

The update method of dictionary class merges the two dictionaries. While merging if key is already

presents in the other dictionary then old value of that key is updated by new value. See some examples:

>>> d={1: 'navi', 2: 'lavi', 3: 'ravi'}

>>> d.update({2:'pari',4:'tanu'})

>>> d

{1: 'navi', 2: 'pari', 3: 'ravi', 4: 'tanu'}

The value =’lavi’ for key=2 was updated to ‘pari’ and 4:’tanu’ was added as new item in dictionary

d.

The parameters for the update method can also be an iterable where keys and values can be

separated using assignment operator. See an example:

>>> d={'english':98,'maths':90}

>>> d.update(science=89,hindi=95,sscience=97)

>>> d

{'english': 98, 'maths': 90, 'science': 89, 'hindi': 95, 'sscience': 97}

3.fromkeys method

The fromkeys method takes an iterable and use that as keys for the creation of new dictionary. The

second parameter is the value for all the keys generated from iterables. The function returns the

generated dictionary. See some examples:

>>> d={}

>>> d.fromkeys([1,2,3,4,5])

{1: None, 2: None, 3: None, 4: None, 5: None}

>>>d= d.fromkeys([1,2,3,4,5],0)

>>>d

{1: 0, 2: 0, 3: 0, 4: 0, 5: 0}

Python Programming Simplified

245

>>> d.fromkeys('aeiou',0)

{'a': 0, 'e': 0, 'i': 0, 'o': 0, 'u': 0}

>>> d.fromkeys('aabra',0)

{'a': 0, 'b': 0, 'r': 0}

4.setdefault method

The setdefault method takes two parameters, the second parameter is optional. First parameter is treated

as key to the dictionary. If key is present in the dictionary, its value is returned. If key is not present and

second parameter is not provided then key is added to the dictionary with value None. If second

parameter is also provided than this parameter is taken as value for the key and inserted into the

dictionary. In the example shown below we are working with a dictionary spn2eng (Spanish to English)

having some Spanish words as keys and their corresponding English translations.

>>spn2eng={'soy':'I am','bien':'good','el hombre':'The man'}

>>> spn2eng.setdefault('amigo')

>>> print(spn2eng.setdefault('amigo'))

None

>>> spn2eng.setdefault('gracias','thank you')

'thank you'

>>> spn2eng

{'soy': 'I am', 'bien': 'good', 'el hombre': 'The man', 'amigo': None,

'gracias': 'thank you'}

5.len method

This built-in method returns number of entries in the dictionary. For the above example

len(spn2eng) returns 5.

6.sorted method

The built-in sorted method sorts the dictionary using keys and returns the sorted keys as list.

This can be used to display the entries of dictionary in sorted manner.

>>> d={'a':34,'c':22,'r':11,'e':10}

>>> sorted(d)

['a', 'c', 'e', 'r']

>>> for k in sorted(d):

... print(k,d[k])

...

a 34

c 22

e 10

r 11

Python Programming Simplified

246

The other way to sort the dictionary on keys is to apply sort method on keys of dictionary.

>>> k=list(d.keys())

>>> k.sort()

>>> k

['a', 'c', 'e', 'r']

8.8 Membership testing in dictionary

The in and not in operator can be applied over dictionary for testing whether a key is present in the

dictionary or not.

>>> if 'a' in d:print ("key exist,value=",d['a'])

...

key exist,value= 34

>>> if 'b' in d:print ("key exist,value=",d['b'])

...

8.9 Scripting examples

Script 8.1 to count frequencies of letters in string

string='aabrakadabra'

d={}

for x in string:

 d[x]=d.get(x,0)+1

print('Letters with Frequencies are')

print(d)

OUTPUT:

Letters with Frequencies are

{'a': 6, 'b': 2, 'r': 2, 'k': 1, 'd': 1}

The get method returns value of x if it is present in dictionary as key else return 0 (second parameter).

So first time say when ‘a’ is encountered then d[‘a’] is set to 1 because d[‘a’]=d.get(‘a’,0)+1 becomes

d[‘a’]=0+1=1,Thus d[‘a’] is set to 1. For next ‘a’, we have d[‘a’]=d.get(‘a’,0)+1. As d[‘a’]=1 so

d.get(‘a’,0) returns 1 and d[‘a’=1+1 is set to 2. The same logic is applied to all other characters.

Script 8.2 to count frequencies of vowels in a given string

string='this is an example of dictionary'

vowels="aeiou"

d={}

d=d.fromkeys(vowels,0)

for x in string:

 if x in vowels:

Python Programming Simplified

247

 d[x]=d.get(x,0)+1

for x in d:

 print(x,d[x])

OUTPUT:

a 3

e 2

i 4

o 2

u 0

The code is identical to the previous script but here first the dictionary has been created using

fromkeys function with vowels ‘aeiou’ as keys and initial frequency to 0. Rest is simple to understand.

One issue with the above code is case sensitivity of vowels. Try to modify the code to include

uppercase also or make it case insensitive.

Script 8.3 switch case implementation using dictionary (simple

#arithmetic calculator)

def plus(a,b):

 return a+b

def minus(a,b):

 return a-b

def div(a,b):

 if b==0:

 return "not possible"

 else:

 return a/b

def mul(a,b):

 return a*b

def power(a,b):

 return a**b

dic={'+':plus,'-':minus,'/':div,'*':mul,'**':power}

a,b=input("Enter two numbers separated by space\n").split()

a=int(a);b=int(b)

op=input("Select operators:+ | - | * | / | **\n")

if op in dic:

 ans=dic[op](a,b)

 print("Answer=",ans)

Python Programming Simplified

248

else:

 print("Unknown operator")

OUTPUT:

(First Run)

Enter two numbers separated by space

3 0

Select operators:+ | - | * | / | **

/

Answer= not possible

(Second Run)

Enter two numbers separated by space

4 5

Select operators:+ | - | * | / | **

=

Unknown operator

The code is interesting to understand. To make use of dictionary as an alternative to switch case we

first need to write functions for every case. In this example here, we want to achieve five arithmetic

operations so we have written five functions for performing addition, subtraction, multiplication,

division and power. All functions takes two parameters and return the respective result. That portion of

code does not need any explanation. What is interesting in the code is that we have keys as various

arithmetic symbols in the form of strings as keys. The functions names are used as values for their

corresponding keys. The expression dic[‘+’] returns a function name plus and expression

dic[‘+’](10,20) is equivalent to plus(10,20).

We first ask two numbers from user and operation which he/she wants to perform. If operator is in list

of operators (as keys) than we call the dictionary with supplied operator as key and two numbers as

argument. As explained in the previous para this is equivalent to calling the respective function

determined by operator supplied.

8.10 Dictionary Comprehension

We have seen examples of list comprehension in previous chapter. The dictionary comprehension is

same as list comprehension but here instead of just elements of list we have keys and values serving

one item of the dictionary. The syntax of dictionary comprehension is also same with the difference

that we are dealing with key:value and not just elements. See some examples

Sr.No Shell Code Explanation

1. >>> sqr={x: x*x for x in range(1,6)}

>>> sqr

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Keys as element from 1:6

and square of 1:6 is as values

2. >>> d={key:value for key,value in

zip('abcde',list(range(5)))}

>>> d

Using zip method one

key,value taken at a time

from ‘abcde’ and 12345 and

Python Programming Simplified

249

{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4} dictionary is created.

3. >>> fruits={'kiwi','guava','pear','mango'}

>>> fdict={k:len(k) for k in fruits}

>>> fdict

{'mango': 5, 'pear': 4, 'guava': 5, 'kiwi': 4}

Fruits and its length as key

and dictionary elements

4. >>>keys=[1,4,5,7]

>>> values=['naman','kuntal','riya','nupur']

>>> di={k:v for k,v in zip(keys,values)}

>>> di

{1: 'naman', 4: 'kuntal', 5: 'riya', 7: 'nupur'}

Dictionary created from two

different list:keys and values.

5. >>> import string

>>> ascii={k:ord(k) for k in string.ascii_lowercase}

>>> ascii

{'a': 97, 'b': 98, 'c': 99, 'd': 100, 'e': 101, 'f': 102, 'g':

103, 'h': 104, 'i': 105, 'j': 106, 'k': 107, 'l': 108, 'm':

109, 'n': 110, 'o': 111, 'p': 112, 'q': 113, 'r': 114, 's':

115, 't': 116, 'u': 117, 'v': 118, 'w': 119, 'x': 120, 'y':

121, 'z': 122}

>>> ascii['v']

118

Generating dictionary of

lowercase alphabet and

corresponding ASCII letter.

6. >>> d={x:x*x for x in range(1,30) if x%5==0}

>>> d

{5: 25, 10: 100, 15: 225, 20: 400, 25: 625}

Dictionary comprehension

with if condition.

8.11Ponderable Points

1. A dictionary is a collection of key-value pair. Here key means index and value means value at the

given index.

2. The dictionary in python can be easily created with curly braces { } or using built-in function

dict().

3. A dictionary can also be a dictionary for a given key. This is nesting of dictionary.

4. Only types that are immutable can be used as keys.

5. The dictionary elements are accessed by simply providing their key as index.

6. Elements can be added, removed, and updated easily in a dictionary.

7. The dictionary can be easily traversed using for loop.

8. The methods keys, values, items are of importance while traversing dictionary in python.

9. Plenty of useful methods can be used in any programming situation.

10. Like list comprehension, dictionary comprehension can also be achieved.

Python Programming Simplified

250

9. Tuple

9.1 Introduction

A tuple is a sequence of objects which can be anything : integer, string, boolean, etc. They are just like

list with integers as indexes for accessing individual items. Tuples are just comma separated values

with optional parenthesis. The difference is that list is mutable and tuple is immutable. Because of this

tuple objects does not support item assignments. Another difference is that list elements are enclosed

within square brackets and tuple elements are enclosed within parenthesis.

9.2 Creating Tuples

A tuple can easily be created as:

>>> t=1,2,3

>>> t

(1, 2, 3)

As mentioned earlier parenthesis is optional to surround elements. See some more examples:

>>> t1=()

>>> type(t1)

<class 'tuple'>

>>> t1=("a","b","man","woman")

>>> t1

('a', 'b', 'man', 'woman')

>>> t1=(10,20,True,[2,3])

>>> t1

(10, 20, True, [2, 3])

>>> t1=(1,2,{'a':20})

As can be seen from above examples a tuple can contains any type of python objects even list and

dictionary. An empty tuple is created using (). A tuple with just one element is created as:

t1=(10,)

A comma is necessary when tuple contains just one element else the type will not be a tuple.

>>> t1=(10,)

>>> type(t1)

<class 'tuple'>

>>> t1=(10)

>>> type(t1)

Python Programming Simplified

251

<class 'int'>

>>> t1=('a')

>>> type(t1)

<class 'str'>

Python also provides tuple constructor for creating empty tuples or creating tuple object from string.

See examples:

>>> t=tuple()

>>> type(t)

<class 'tuple'>

>>> t=tuple('example')

>>> t

('e', 'x', 'a', 'm', 'p', 'l', 'e')

Even list can be easily converted into a tuple. This is required when you do not want item to be

modified by user. See one example:

>>> L=list('example')

>>> L

['e', 'x', 'a', 'm', 'p', 'l', 'e']

>>> t=tuple(L)

>>> t

('e', 'x', 'a', 'm', 'p', 'l', 'e')

The above code can be written in just one line of code:

t=tuple(list(‘example’))

9.3 Accessing Tuple elements

Accessing tuple elements are like accessing list elements. Simple indexing within square brackets and

slicing both are allowed. See some example:

>>> t=tuple('example')

>>> t[0]

'e'

>>> t[0:4]

('e', 'x', 'a', 'm')

>>> t[-1]

'e'

>>> t[-4:-1]

('m', 'p', 'l')

>>> t[-4:]

Python Programming Simplified

252

('m', 'p', 'l', 'e')

To combine elements back and form a string (only in case of string elements) you can make use of join

method of string class. See one example:

>>> print('you have an',''.join(t[0:4]))

you have an exam

9.4 Modifying tuple elements

As we know that tuples are immutable, so modifying tuple elements are not allowed. Doing so will

raise an error. But we can combine some slice of tuple and form new tuples or even new strings. See

some examples:

>>> t=tuple('example')

>>> t[0]='E'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> t1="My "+''.join(t[0:4])

>>> t1

'My exam'

>>> t1=(10,20)+t[0:4]

>>> t1

(10, 20, 'e', 'x', 'a', 'm')

9.5 Deleting tuple elements

Deleting tuple elements is not permitted because of its immutable nature. However entire tuple can be

deleted at once using del method.

>>> t=(1,2,'hello',True)

>>> del t[0]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object doesn't support item deletion

>>> del t

>>> t

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 't' is not defined

Python Programming Simplified

253

9.6 Operations on tuple

Tuples in python can be combined using + operator, can be compared using relational operators,

membership test can be performed using in and not in operator and * operator can be used for repetition

of tuple elements. Let’s understand all operators using examples:

9.6.1 Tuple concatenation

Two tuples can be concatenated using the + operator. See some example:

>>> t=(1,2,3)

>>> t1=t+(4,5)

>>> t1

(1, 2, 3, 4, 5)

>>> t=(1,2)+('hello',)

>>> t

(1, 2, 'hello')

9.6.2 Tuple Repetition

The * operator as we have seen earlier with list and strings can be used with tuple also. The purpose

remain same for performing repetition of elements.See some examples

>>> ('a',)*5

('a', 'a', 'a', 'a', 'a')

>>> t=(1,2)

>>> t*5

(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)

>>> t=('a',)

>>> t=t+('b',)*3

>>> t

('a', 'b', 'b', 'b')

9.6.3 Tuple Membership

The membership operator in and not in checks existence/ non existence of an element in the tuple.

They are same as used with list , string and dictionary. See some example.

>>> t=tuple('abcd')

>>> 'e' in t

False

>>> 'a' in t

True

>>> 'e' not in t

True

Python Programming Simplified

254

>>> 'a' not in t

False

9.6.4 Tuple comparison

The relational operators can be used for comparison of two tuples. The comparison is done element

wise . First element of each tuple is compared, if they differ than either one of the tuple is greater. If

they are not then subsequent elements are compared. See some examples:

>>> t=tuple('abc')

>>> t1=tuple('abc')

>>> t2=tuple('abde')

>>> t1==t2

False

>>> t1>t2

False

>>> t2>t1

True

In the tuple t1 and t2 third element is differ and because ASCII value of ‘d’ is more than ‘c’ so t2 >t1

turns out to be true. See one more example

>>> (3,5,6)<(6,9,10)

True

>>> (13,5,6)>=(6,19,10)

True

This comparison of tuple is quite useful in certain situations where sorting of element is to be

performed. Let’s understand it with the aid of an example. Assuming you have a dictionary where key

elements are names of students (assuming unique names) and values are their marks. You want to sort

the elements of dictionary on the basis of their marks, but marks are not key part , they are value part of

dictionary. To do this we can have a list of tuples of two elements and while making list of tuples we

put value as first element of each tuple.

>>> stu={'a':98,'b':97,'c':87,'d':99}

>>> L=list()

>>> for name,marks in stu.items():

... L.append((marks,name))

...

>>> L

[(98, 'a'), (97, 'b'), (87, 'c'), (99, 'd')]

>>> L.sort(reverse=True)

>>> L

[(99, 'd'), (98, 'a'), (97, 'b'), (87, 'c')]

Python Programming Simplified

255

You can notice that each element of the list is a tuple and in each tuple the first element is marks and

second element of each tuple is student name. The list is than sorted in descending order. The script

version of the above is presented below with a minor modification:

Script 9.1 To generate merit list of students using dictionary and

#tuple

stu={'a':98,'b':97,'c':87,'d':99}

L=list()

for name,marks in stu.items():

 L.append((marks,name))

L.sort(reverse=True)

print("Student Merit list")

for i in range(0,len(L)):

 print(L[i][1],"\t",L[i][0])

OUTPUT:

Student Merit list

d 99

a 98

b 97

c 87

Because L has tuple as each of its element so first element of the tuple is accessed as L[0][0] and

second element of tuple as L[0][1] (first index represent list element and second index tuple element).

One more example where this comparison of tuples is useful is arranging words of a string according to

their length. For example : “This is an example”. If the preceding string is the input to our script or

shell the output will be: [(7,’example’),(4,’This’),(2,’is’),(2,’an’].

Script 9.2 Sorting string using their length

s='I just love working in python'

L=s.split()

L1=list()

for word in L:

 L1.append((len(word),word))

L1.sort(reverse=True)

print("Sorted Words (by length)")

for i in range(0,len(L1)):

 print(L1[i][1])

OUTPUT:

Python Programming Simplified

256

Sorted Words (by length)

working

python

love

just

in

I

9.5 Ponderable Points

1. A tuple is a sequence of objects which can be anything : integer, string, boolean, etc.

2. The list is mutable and tuple is immutable. Because of this tuple objects does not support item

assignments.

3. A tuple with just one element is created as: t1=(10,)

4. Accessing tuple elements are like accessing list elements: using []

5. Deletion and modification of tuple elements are not permitted.

6. Operations using +, * and membership operators are allowed.

Python Programming Simplified

257

10. Modules in Python

10.1 Introduction

A Python module is a Python file itself where constants, functions, and classes are defined. It allows us

to group related objects into a single python file.For example, all math-related functions can be easily

placed in a module math or mymath. The name of the module is recognized by the python file itself.

Python modules provides the idea of re-usability so that code once written in one python file can be

used by importing that file as python module. Each module written is usually independent of each

other and can be used within other module using import statement. Use of python modules make

python programs and projects more manageable. We have seen usage of standard modules in number of

codes in previous chapters.

In this chapter we are going to study module creation and loading them in other python files.

10.2 The first Python Module

The best to understand about module is to create one and use it. So lets get started !

Create a file in your current working directory by the name : mymath.py. You can use any of your

favorite editor for writing the python code.

""" Example of module in Python-mymath module"""

pi=3.14

def area(r):

 """ input: radius r

 output: area of circle

 """

 global pi

 return pi*r*r

def perimeter(r):

 """ input: radius r

 output: perimeter of circle

 """

 global pi

 return 2*pi*r

In the above code written in “mymath.py” file we have first line as documentation for the module

written in triple double quotes. The module is having one global variable pi and two functions to

calculate area and perimeter of a circle. Both the function have their own doc string.

Once done , open python shell from the same working directory. In order to use the module we have

just created we need to import it. Without importing you cannot access the variable and functions of a

module. If you try you are going to get NameError exception as:

>>> area

Traceback (most recent call last):

Python Programming Simplified

258

 File "<stdin>", line 1, in <module>

NameError: name 'area' is not defined

(Same type of error will be shown for pi and perimeter). So let’s import the module and use it:

>>> import mymath

>>> mymath.pi

3.14

>>> mymath.area(4)

50.24

>>> mymath.perimeter(4)

25.12

When you import module the python system searches for the file modulename.py (here mymath.py)

and loads it. But you must prefix module name before any object of the module. You can see that after

importing mymath module you can use the variable and functions using dot notation.

There is also an easier way where you don’t have to prefix the module name before any module

contents (variable,function,class).

>>> from mymath import area,perimeter

>>> area(2)

12.56

>>> perimeter(2)

12.56

>>> pi

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'pi' is not defined

As you can see from the above code you can import specific functions or any constant from the module

using syntax: from modulename import functions,constants,.....

Here we imported area and perimeter from the module mymath so in calling them we do not need to

prefix module name mymath. But as you can notice as didn’t import pi from the mymath module using

this syntax we cannot use pi without prefixing mymath module name. You have to use pi as mymath.pi.

But if you want you also import pi along with functions as:

from mymath import area,perimeter,pi

Lastly if you want you can also see docstrings of both modules and functions:

>>> mymath.__doc__

' Example of module in Python-mymath module'

>>> print(area.__doc__)

Python Programming Simplified

259

 input: radius r

 output: area of circle

>>> print(perimeter.__doc__)

 input: radius r

 output: perimeter of circle

>>>

10.3 Reloading the module

On times you want to do some changes to your module file and want to use again in your code. But

there is an issue over here. After doing some changes in the file if you try to load it again using import

statement it does not work. Let’s add the following code to our mymath.py file

def max3(a,b,c):

 """ returns max of 3 numbers a,b,c"""

 return max3(max3(a,b),c)

Now if you import the module again as you have modified your module file it won’t include the new

function max3. The simple reason behind this is that when a module is first imported a byte code file

having .pyc extension is created and used when functions/constants inside the module are used. When

the module is changed or modified importing module second time does not change the byte code file.

Only reloading the module can cause byte code file to be recreated or if you shut down the python shell

and restart it again.

Shutting down the python shell and opening it again is a bit time consuming and you usually don’t want

when you changing your module frequently. The easy way to reload your module is using reload

function that is part of importlib module.

>>> import importlib

>>> importlib.reload(mymath)

<module 'mymath' from

'/home/drvikasthada/PycharmProjects/commontask/mymath.py'>

>>> mymath.max3(2,3,5)

5

Python Programming Simplified

260

10.4 Importing in another script

We saw simple example of creating a module and using it python shell. Lets create one more file in the

current working directory to use this mymath module into another python script.

import mymath

r=float(input("Enter radius: "))

ar=mymath.area(r)

pr=mymath.perimeter(r)

print("Radius=",r)

print("Circle Area=",round(ar,2))

print("Circle Perimeter=",round(pr,2))

OUTPUT:

Enter radius: 2.3

Radius= 2.3

Circle Area= 16.61

Circle Perimeter= 14.44

The code is self-explanatory.

10.5 Understanding import

We have seen examples of import in the previous section. We explained how to use import keyword for

importing modules and from syntax for importing selective contents from module. Then a different

section on import. Well in this section I want to show you something more about import that we did not

discuss in the previous section.

For importing everything from mymath module we can use the following:

from mymath import *

The * notation imports everything from the module mymath except ones that start with underscore. To

understand this lets take an example. Lets add a new function definition to mymath module along with

new constant __MAX=1000:

def __myadd__(a,b):

 return a+b

__MAX=1000

You can either reload the module or start a new python shell. Now if you write

from mymath import *

Then above import does not import _myadd_ method and __MAX and gives you error:

>>> area(2)

12.56

>>> perimeter(2)

12.56

>>> _myadd_(2,3)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

Python Programming Simplified

261

NameError: name '_myadd_' is not defined

>>> pi

3.14

>>> __MAX

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name '__MAX' is not defined

Using from method also allows you to create alias. See an example:

>>> from mymath import perimeter as pr

>>> pr(2)

12.56

>>> from mymath import area as A,perimeter as pr

>>> A(2)

12.56

>>> pr(3)

18.84

In the first we create an alias pr for perimeter and in second example we create A as alias for area

method and alias pr for perimeter. Alias work fine not just for functions, they also work for module also

like:

>>> import mymath as mm

>>> mm.area(2)

12.56

10.6 The Search Path for Module

Ever wondered where python look for all the built-in modules ? This information is stored in the path

variable that is part of the sys module. Lets see the same in my laptop:

>>> import sys

>>> sys.path

['', '/home/drvikasthada/anaconda3/lib/python38.zip',

'/home/drvikasthada/anaconda3/lib/python3.8',

'/home/drvikasthada/anaconda3/lib/python3.8/lib-dynload',

'/home/drvikasthada/.local/lib/python3.8/site-packages',

'/home/drvikasthada/anaconda3/lib/python3.8/site-packages']

As you can see sys.path returns a list containing all different paths where python look for all the built-in

modules. Interesting to note is the first element which is empty string. This empty string represents

current directory to look for any module files. The contents of sys.path is created during installation of

python or anaconda.

Python Programming Simplified

262

Having understood the concept of sys.path, lets understand how can we place our module in search path

so that our module can be searched not from current directory but from anywhere within the system.

There are two ways to achieve this:

10.6.1 The PYTHONPATH variable

The PYTHONPATH environment variable is used to set the path for any directory where you want the

system to look for the module files. We will demonstrate this using an example in ubuntu 18.04

We want that out module definitions stored in file mymath.py is available everywhere. The path to

directory is : /home/drvikasthada/PycharmProjects/commontask. We have to open file .bashrc and

make an entry into this file as shown below:

Once done, save the file and restart the shell. Now each time you use your own created modules then

the module will be searched in the path as set in PYTHONPATH environment variable. To also check

that this new path has been added to the path as returned by sys module see below:

>>> import sys

>>> sys.path

['', '/home/drvikasthada/PycharmProjects/commontask',

'/home/drvikasthada/anaconda3/lib/python38.zip',

'/home/drvikasthada/anaconda3/lib/python3.8',

'/home/drvikasthada/anaconda3/lib/python3.8/lib-dynload',

'/home/drvikasthada/.local/lib/python3.8/site-packages',

'/home/drvikasthada/anaconda3/lib/python3.8/site-packages']

Second element of this list is our PYTHONPATH. First element is emptystring.

10.6.2 Adding Path to sys.path

The second way of setting the module path is adding the path to the list as returned by sys.path. Support

we have a path where our modules reside, and we want to have access to these modules from anywhere

within the system. The easy but not so efficient way is to append that path to sys.path as shown below:

>>> import sys

>>> sys.path

['', '/home/drvikasthada/PycharmProjects/commontask',

'/home/drvikasthada/anaconda3/lib/python38.zip',

'/home/drvikasthada/anaconda3/lib/python3.8',

'/home/drvikasthada/anaconda3/lib/python3.8/lib-dynload',

'/home/drvikasthada/.local/lib/python3.8/site-packages',

'/home/drvikasthada/anaconda3/lib/python3.8/site-packages']

>>> sys.path.append('/home/drvikasthada/mymodules/')

>>> sys.path

Python Programming Simplified

263

['', '/home/drvikasthada/PycharmProjects/commontask',

'/home/drvikasthada/anaconda3/lib/python38.zip',

'/home/drvikasthada/anaconda3/lib/python3.8',

'/home/drvikasthada/anaconda3/lib/python3.8/lib-dynload',

'/home/drvikasthada/.local/lib/python3.8/site-packages',

'/home/drvikasthada/anaconda3/lib/python3.8/site-packages',

'/home/drvikasthada/mymodules/']

But the problem with this approach is that once you exit from shell and open it again the path vanishes.

So effect of this approach is only temporary and first approach using PYTHONPATH is recommended.

10.7 The default module

The default module in python3 is buitlins. The module has number of functions that are commonly

used by programmer to perform basic python scripting. As it is default module there is no need to

import this module. See the contents of this module in python shell:

>>> dir(builtins)

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',

'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',

'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',

'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',

'FileExistsError', 'FileNotFoundError', 'FloatingPointError',

'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',

'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',

'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',

'MemoryError', 'ModuleNotFoundError', 'NameError', 'None',

'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError',

'OverflowError', 'PendingDeprecationWarning', 'PermissionError',

'ProcessLookupError', 'RecursionError', 'ReferenceError',

'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration',

'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',

'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',

'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',

'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',

'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',

'__debug__', '__doc__', '__import__', '__loader__', '__name__',

'__package__', '__spec__', 'abs', 'all', 'any', 'ascii', 'bin', 'bool',

'breakpoint', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod',

'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir',

'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format',

'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id',

'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license',

'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object',

'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr',

'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod',

'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Python Programming Simplified

264

In Python2 the name of default module was __builtins__. It has been changed to builtins in version 3.

But inside directory function dir both __builtins__ and builtins works.

10.8 The main program

Every python script has a top-level script known as main program. The module name for the main

program is always __main__ . Further __name__ global variable also has value as __main__ when the

module is running as main program instead of being imported in some other module.

The code to check if the module is being used as the main program or not can be easily done by

writing:

if __name__ == '__main__':

Lets understand this using a simple example:

mymath.py

pi=3.14

def area(r):

 global pi

 return pi*r*r

def sum2(a,b):

 return a+b

a=10

b=20

r=2.0

print(f"Sum of {a} and {b} is {sum2(a,b)}")

print(f"Area of Circle with radius {r} is {area(r)}")

When you run the above python module (every python module is a script and executable) you will get

the output as:

Sum of 10 and 20 is 30

Area of Circle with radius 2.0 is 12.56

Now lets say you want to use the module example.py in some other python file and use the function

sum2 and area.

newfile.py

import mymath

print("Area= ",mymath.area(3.0))

print("Sum= ",mymath.sum2(1,6))

OUTPUT:

Sum of 10 and 20 is 30

Area of Circle with radius 2.0 is 12.56

Area= 28.259999999999998

Sum= 7

The first two lines of output you did not expect. The output is because of import mymath line. When

you want to use some code to be executed in a module when running as python script you must use the

if __name__==”__main__”: line. Now modify the code in mymath.py as:

Python Programming Simplified

265

pi=3.14

def area(r):

 global pi

 return pi*r*r

def sum2(a,b):

 return a+b

if __name__=="__main__":

 a=10

 b=20

 r=2.0

 print(f"Sum of {a} and {b} is {sum2(a,b)}")

 print(f"Area of Circle with radius {r} is {area(r)}")

After adding the if block if you import mymath in other python script, the code within if block in

mymath doesn’t execute. It will only execute when you run mymath as python script. This is technique

which you should always follows in any python script.

10.9 Ponderable Points

1. A Python module is a python file itself where constants, functions and classes are defined.

2. A module can be imported using import keyword followed by module name.

3. An alias for the module can be created as: import module as alias.

4. An example is : import numpy as np

5. Specific functions can be created from module as: from module import fun1,fun2.

6. An example is: from mymath import area, perimeter

7. The reload method of importlib can be used for reloading the module after module has been modified.

8. Example is: import importlib; importlib.reload(mymath).

9. The sys.path returns list of search path where various modules are functions are looked for access to

your code.

10. The PYTHONPATH environment variable is used to set the path for any directory where you

want the system to look for the module files.

11. The default module in python3 is buitlins

12. The code to check if the module is being used as the main program or not can be easily done by

writing:

if __name__ == '__main__':

Python Programming Simplified

266

11. Classes and Objects

11.1 Introduction

A class is the basic unit of encapsulation and abstraction. The class binds together data and methods

which work on data. The class is an abstract data type (ADT) so creation of class simply creates a

template. The data members of the class are called fields and member function are known as methods.

As compare to other programming language it is very easy to create and use a class. Lets start by

creating our first class.

class demo:

pass

Just two lines of object-oriented programming in Python. You might be surprised as where are data and

methods of this class named as demo. Hold on, as Python does not force as to declare methods and

function in class. We can create an empty class by just typing pass statement inside the class.

Now lets have some basic theory. The class is a keyword. Following this keyword class, demo

represents name of the class. The class name must adhere rules of writing identifier as class_name is

nothing but an identifier. It is recommended that classes should be named using CamelCase notation

(start with a capital letter; any subsequent words should also start with a capital).The class is opened by

using : and writing any code indented by 4 spaces or tab but not both. To make use of the class we need

to create variable of type class. A variable of class type is known as an object. The class is loaded into

memory when first object of the class is created.

Creation of object creates memory space for the object which depends upon size of the data members of

the class. In python this is pure dynamic and no prior allocation is required. Further members of a class

can be created dynamically. For each object separate copy of the data members is created. But only one

copy of the member function is created which is shared by all the objects. The objects call member

functions of the class using operator . which is known as period or membership operator. Functions and

method example will be covered in a short while.

But how do we work with this class. Well its so easy!. Lets use this class in either Python shell or you

can create a complete Python script. I’ll show you in Python shell:

Python Programming Simplified

267

Make sure you have pass statement indented by 4 spaces. Objects are created by treating class name as

function as written as demo(). Just by writing demo() creates an object and same is stored in obj1 and

obj2. On printing both the objects display their memory addresses. The __main__ is default module

name in the output. Note that an object can also be created without assigning to any object as shown:

But each time you create an object in this manner a new memory address will be printed and but there

is no way to track the location of objects because we have not assigned the newly created objects into

any variables. This way of creating objects sometimes useful.

If you notice carefully we have created two members for object 2: name,age and just one member for

object 1. This may seems strange to you if you have some prior experience of OOP in C++ and Java

and objects from same class cannot have different members. But Python allow this !.

11.2 Adding members

Lets create a new class Person with data members and methods to fully understand the class in Python.

This code we create in file Person.py using PyCharm Community Edition.

class Person:

 definput(self,name,age):

 self.name=name

 self.age=age

 defshow(self):

 print(f"Name={self.name}\tAge={self.age}")

defmain():

 p1=Person()

Python Programming Simplified

268

 p1.input("Naman",21)

 p2=Person()

 p2.input("Chhaya",19)

 p1.show()

 p2.show()

if__name__=="__main__":

 main()

OUTPUT:

Name=Naman Age=21

Name=Chhaya Age=19

Lets understand the code. We start with the methods created inside the class Person. A method is fancy

name given to function in the context of OOP. It starts with the keyword def followed by a space and

the name of the method. This is followed by a set of parentheses containing the parameter list separated

by comma(we'll discuss that self parameter in a short while), and terminated with a colon. The next line

is indented to contain the statements inside the method. The self argument to a method is simply a

reference to the object that the method is being invoked on or reference to the current object (equivalent

to this in C++ and Java). We can access attributes and methods of that object as if it were any another

object. The data members are created dynamically using self and assigned values passed to method as

done in input method. Remember ! self is not a keyword and any other name can be used. The data

members of class name and age are always accessed using self parameter that must always be first

parameter in any class method. When method input is called using p1 object “Naman” and 21 is

assigned to name and age parameters in method input and in method body they are assigned to name

and age of object p1. The self here represent current object p1 that is passed automatically along with

the two arguments. Next when the same method is called by p2, self now represent p2 in input method

and name and age is for p2 is set to “Chhaya” and 19 respectively.

Similarly when show method is called,reference of current object is passed to self.

The main method is not part of the class and is the standard practice when you want to run your code

from the current module itself. That’s why the if block checks if we name of the module is __main__.

Lets modify the script Person.py by removing everything except class code. Now you can easily check

the functionality of the code inside Python shell. Run your code on command prompt as: python -i

Person.py. The preceding code interprets the code in Person.py and start the shell:

As you can see from the above figure, once script is interpreted correctly(shell will also be invoked if

code has error)you can check class functionality inside the Python shell the way you have done inside

the script.

11.3 Initializing Object

Python Programming Simplified

269

Most programming languages like C++ and Java have a concept of constructor that is used to create

and initialize the object. Python has the concept of constructor but in practice it make use of __init__

method(double underscore to either side of init) for initializing the object. The constructor method is

known as __new__ and accepts exactly one argument; the class that is being constructed (it is called

before the object is constructed, so there is no self argument). In practice it is rarely used and __init__

is mostly used for initializing the object so most of authors hide the notion of __new__ and explain

__init__ as constructor in Python.

Lets see how we can initialize the object using __init__ method. We replace the input method in

Person class by __init__ method as:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def show(self):

 print(f"Name={self.name}\tAge={self.age}")

Once the class has initializer method the object can be created as:

p1=Person(“Juhi”,20)

Here we don’t have to call the __init__ method,it is called as we write Person(“Juhi”,20). The self is

passed secretly and arguments are collected in name and age. Inside the body of the initializer they are

assigned to members of p1.

If you want to make it more compact, even show method can be called from inside the init method.

Just add self.show() inside init method. Now when you create object of class Person,after initializing it

will call show method and display the members.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 self.show()

 def show(self):

 print(f"Name={self.name}\tAge={self.age}")

Python Programming Simplified

270

Person("Navin",20)

11.3.1 Default Constructor

When you initialize objects using init method as explain in the previous section,you cannot objects

without passing any arguments. That is if I create an object of Person class as: obj=Person() it will give

you error as shown below:

In other programming languages you can overload the constructor (here init method)but in Python you

can only have just one init method. Then how you can make a call like Person().

The solution is simple. Just set the parameters in init method as default. See an example.

class Person:

 def __init__(self, name="", age=0):

 self.name = name

 self.age = age

 def show(self):

 print(f"Name={self.name}\tAge={self.age}")

In the init method we have set name and age as default parameters. This allows us to create an object of

Person class in many number of ways as:

Person()

Person(“Mohit”)

Person(“Mohit”,23)

Person(23) # will set name to 23 and age will be 0

Person(age=23) # name is “” and age is 23

Person(age=21,name=”juhi”)

See the code in execution:

(base) drvikasthada@MyLapi:~/PycharmProjects/commontask$ python -i

Person.py

>>> p1=Person()

>>> p1.show()

Python Programming Simplified

271

Name= Age=0

>>> p2=Person("Mohit")

>>> p2.show()

Name=Mohit Age=0

>>> p3=Person(23)

>>> p3.show()

Name=23 Age=0

>>> p3=Person(age=23,name="juhi")

>>> p3.show()

Name=juhi Age=23

>>> p3=Person(age=23)

>>> p3.show()

Name= Age=23

11.4 Passing and Returning objects to functions

Similar to returning and passing arguments to functions of basic types like int,char, double, float,

string,list, tuple etc, we can pass objects of class to functions and even return objects from functions.

See one small example first then we will make a bit bigger.

class Person:

 def __init__(self,name=""):

 self.name=name

 def copy(self,P):

 self.name=P.name

def main():

 p1=Person("Naman")

 p2=Person()

 p2.copy(p1)

 print(f"{p1.name},{p2.name}")

if __name__=="__main__":

 main()

The init method in class Person has just one member name. For object p1 this name is set to “Naman”

and initially for p2 it is empty. The method copy takes one object of class Person type and assigns it to

P. The call is by reference so if try to change the value of name member of p1 it is possible. As copy

method was called by p2, self represents p2 in the copy method. The statement self.name=P.name

copies name of p1 to name of p2.

Let’s see one more example where we pass and object and return an object.

Python Programming Simplified

272

class Person:

 def __init__(self,name="",sal=0):

 self.name=name

 self.sal=sal

 def compare(self,P):

 if self.sal > P.sal:

 return self

 else:

 return P

def main():

 p1=Person("Naman",25000)

 p2=Person("Bina",27000)

 p3=Person()

 p3=p1.compare(p2)

 print(f"{p3.name},{p3.sal}")

if __name__=="__main__":

 main()

Here the Person class has two members: name and sal. In the compare method we check which

person’s salary is higher. In statement p1.compare(p2), p1 calls the function and pass p2 as object.

Inside function self is p1 and p2 is P. The salary of both the Person object is compared and that person

is returned. In the example it is object p2. The returned object is assigned to p3 and its members are

printed.

As a final example of passing and returning objects we work with complex numbers.

class Complex:

 def __init__(self,real=0,imag=0):

 self.real=real

 self.imag=imag

 def add(self,C):

 c1=Complex()

 c1.real=self.real+C.real

Python Programming Simplified

273

 c1.imag=self.imag+C.imag

 return c1

 def mul(self,C):

 r=self.real*C.real-self.imag*C.imag

 i=self.real*C.imag+self.imag*C.real

 return Complex(r,i)

 def __str__(self):

 return f"{self.real}+i{self.imag}"

def main():

 c1=Complex(2,3)

 c2=Complex(4,5)

 c3=c1.add(c2)

 c4=c1.mul(c2)

 print("Complex Number c1=",c1)

 print("Complex Number c2=",c2)

 print("Addition =",c3)

 print("Multiplication =", c4)

if __name__=="__main__":

 main()

 Assume two complex numbers are (x1+jy1) and (x2+jy2) . Here j is called iota and j is √-1 so j * j

will be -1. Now multiplication will be:

(x1 + j y1) * (x2 + j y2) = x1 x2 + j x1 y2 + j y1 x2 – y1 y2

= (x1 x2 – y1 y2) + j(x1 y2 + x2 y1)

For addition we can simply add the real part together and imaginary part together. In method add we

pass an object of Complex class that is stored in C. Inside the body we find sum of real part of self and

C and store in c1.real (c1 is temporary object created of Complex class). Similarly imaginary parts are

added together. This object is then returned. In the case of multiplication the temporary object is not

created. Here we store the real part and imaginary part (after calculation) in r and i. The last line creates

an object of Complex class using this calculated r and i and returned.

Python Programming Simplified

274

One important method you can notice in this code is __str__ method. This method allows us to treat

object as built-in data type and use in the print method for printing. You can note that we have simply

printed all objects using print method without defining and show method. Whenever the __str__

method is defined in a class and that object is used for printing, __str__ method gets called

automatically whenever the object is accessed. The __str__ method simply has to return a string.

If you want real feeling of complex numbers using arithmetic operators, instead of add and mul method

you can override built-in methods __add__ and __mul__. See the modified code below (only changed

portion)

def __add__(self,C):

 c1=Complex()

 c1.real=self.real+C.real

 c1.imag=self.imag+C.imag

 return c1

def __mul__(self,C):

 r=self.real*C.real-self.imag*C.imag

 i=self.real*C.imag+self.imag*C.real

 return Complex(r,i)

And in calling:

c3=c1+c2

c4=c1*c2

11.5 Array of objects

Similar to array of any basic data types we can create array of objects of any class. This comes handy

when we want to process say salary of number of employees, processing accounts of persons, records

of students or age of students etc. In all these situation array of objects makes our work easier and

makes processing faster. Simple intuition is to create objects of a class and keep adding to an empty list.

For example if Item is a class with item_name and price as its member fields then an array of objects of

Item class can be created as:

ItemArray=[]

ItemArray.append(Item(“Mouse”,560))

ItemArray.append(Item(“Pendrive”,300))

ItemArray.append(Item(“Monitor”,2500))

ItemArray.append(Item(“Keyboard”,750))

Python Programming Simplified

275

The ItemArray above is now a list of objects where first object is at index 0 and last is at index 3. All

the list operations can easily be applied to it. Lets see how can we create an array of objects using an

example.

import operator

class Kid:

 def __init__(self, name="", age=0):

 self.name = name

 self.age = age

 def __str__(self):

 return f"Name={self.name}\tAge={self.age}"

kids=[]

kids.append(Kid("chiku",8))

kids.append(Kid("nonu",12))

kids.append(Kid("tiku",9))

kids.append(Kid("chiya",11))

kids.append(Kid("chiky",6))

kids.sort(key=operator.attrgetter('age'),reverse=True)

for kid in kids:

 print(kid)

OUTPUT:

Name=nonu Age=12

Name=chiya Age=11

Name=tiku Age=9

Name=chiku Age=8

Name=chiky Age=6

The Kid class has name and age has member fields. As explained above 5 different objects are added to

the list kids. If you just want to display all objects just ignore sort method applied. In sort method we

are sorting the objects on the field “age” and reverse=True means sorting in descending order. The

attrgetter method of operator module does the job over here. The default sorting is in ascending order

by removing reverse=True.

The other to perform sorting is using sorted method where key is assigned a function. Lets replace the

line having sort method by :

kids=sorted(kids, key=lambda kid: kid.age)

The sorted method takes list as first argument and named parameter key as second argument. This

named argument must be defined a function that returns atrribute on which sorting is to be done.

Lets see one more example of array of objects where we sort the geometric points based on their

distance from origin.

from math import sqrt

Python Programming Simplified

276

class Point:

 def __init__(self,x=0,y=0):

 self.x=x

 self.y=y

 def dist(self):

 return sqrt(self.x*self.x+self.y*self.y)

 def __str__(self):

 return f"({self.x},{self.y})"

points=[]

points.append(Point(3,4))

points.append(Point(4,5))

points.append(Point(-2,-3))

points.append(Point(7,5))

points.append(Point(8,6))

points=sorted(points,key=lambda point: point.dist())

print("Sorted Points (nearer to origin first)")

for point in points:

 print(point)

 The Point class has two data members: x and y that represents x and y coordinates of point. To find

distance from origin we have simply written function dist that returns distance of the point from origin.

The simple formula used is euclidean distance: √(x2-x1)2+(y2-y1)2 f which is distance between two

points (x1,y1) and (x2,y2). One point is (0,0) because of origin. Rest of the code is simple to

understand. The main code to understand is sorted function. The argument is points array and named

argument key is lambda function. Note that sorting is done on distance, that’s why dist function

returns distance between current point and origin.

 11.6 Static members in Class

We know that whenever an object is created separate copies of data members are created for each

object. But in case of static data members only one copy of static data members is available which is

shared among all the objects created. The static data member is member of class and therefore it is also

known as class variable or class member.

Note several points about static data members:

1. They are created by placing variable inside the class and not within any method of the class.

2. There is one single copy of the static data member is created which is shared among all objects.

Changes made by one object on a static data member are reflected back to all other objects.

3. They are used when you have to keep one value common to whole class.

4. They can be accessed either by object name or by class name

Lets understand this new concept with the help of a small program.

Python Programming Simplified

277

class demo:

 s=10

 def __init__(self,var):

 self.ns=var

 demo.s=demo.s+1

 def __str__(self):

 return f"Static var={demo.s}\tNon Static var={self.ns}"

d1=demo(10)

print(d1)

d2=demo(20)

print(d2)

d3=demo(30)

print(d3)

OUTPUT:

Static var=11 Non Static var=10

Static var=12 Non Static var=20

Static var=13 Non Static var=30

The variable s created as first statement inside the class demo and is a class variable or static variable.

Inside the init method ns is non-static variable of object variable. The ns variable is accessed using self

and s is accessed using classname(it can also be accessed using object). Each time init method is called

this static variable s is increased by 1, thus keeping track of number of objects created. The output

clearly shows that only a single copy of class variable is shared among all objects.

Lets have another example to understand more about class variables.

class University:

 pcount = 0

 def __init__(self, stream, pcount):

 self.stream = stream

 self.pcount = pcount

 University.pcount = University.pcount + pcount

 def __str__(self):

 return f"University Faculty={University.pcount}" \

 f"\t{self.stream} Faculty ={self.pcount}"

def main():

 engineering = University("Engineering", 36);

 print(engineering)

 biotech = University("BioTech", 21);

 print (biotech)

if __name__ == '__main__':

 main()

OUTPUT:

University Faculty=36 Engineering Faculty =36

University Faculty=57 BioTech Faculty =21

Python Programming Simplified

278

 The pcount in University class represents counts of total faculties in various schools. The pcount as

object variable represent count of faculties in individual schools. Here two different schools are taken:

“Engineering” and “BioTech”. Both the schools are represented by two different objects. For

engineering object stream is set to “Engineering” and pcount is set to 36 during call to init method

and University’s pcount increased by 36. Similarly for biotech object stream is set to “BioTech”

and pcount is set to 21 during call to init method and University’s pcount increases by 21.

The class variable has many more ways to be accessed. In the above example we can write:

print (engineering.__class__.pcount)

print (type(biotech).pcount)

Both will print the pcount of University as engineering.__class__ and type(biotech) both will print:

<class '__main__.University'>

Before wrapping up this section let’s see one final example where we access the class variable using

object.

class demo:

 svar = 10

print ("class variable using class=",demo.svar)

obj = demo()

print("class variable using object=",obj.svar)

obj.svar = 20

print("object variable using object=",obj.svar)

print("class variable using class=",demo.svar)

OUTPUT:

class variable using class= 10

class variable using object= 10

object variable using object= 20

class variable using class= 10

 The class demo has just one class variable svar. First two print statements are easy to understand. One

main point to understand is that when you create and initialize svar for the object obj, it is treated

different despite having the same name. This is clarified by the last two print statements.

11.7 Static methods

Static methods in Python are bound to a class rather than the objects for that class. This means that you

do not need any object to call a static. Further as there is no self argument is passed for static methods,

static methods cannot modify the state of an object. This also implies that static method knows nothing

about the class and just deals with the parameters if any. They can be called both by the class and its

object.

There are two ways to create static methods in python:

⚫ Using staticmethod()

⚫ Using @staticmethod

Python Programming Simplified

279

We will see both the ways to understand creation of static methods.

Having said enough about static method, let’s see our first example of static method in python using

staticmethod().

class demo:

 def show():

 print("Hello from show")

create show static method

demo.show = staticmethod(demo.show)

demo.show()

demo().show()

OUTPUT:

Hello from show

Hello from show

 The function show() has no self parameter and its not an instance method. The staticmethod() function

takes a function as input (function to be converted to static method) and return a static method. The last

two lines calls the static method. First using class and second using object.

That was a very trivial example of static methods in python using staticmethod(). Lets take one more

example where we have some arguments to the static method.

class demo:

 def add(a,b):

 return a+b

create add static method

demo.add = staticmethod(demo.add)

print("Called using class=",demo.add(1,4))

print("Called using object=",demo().add(3,4))

OUTPUT:

Called using class= 5

Called using object= 7

Not much change from the previous example. We have just one static method that add two numbers.

Using @staticmethod

The staticmethod() approach is less popular as it require a staticmethod function to convert our internal

class method to static method. The @staticmethod is a decorator (don’t worry much about it at this

time) and its use is much simple as compared to staticmethod() way. Lets rewrite the previous code

using @staticmethod decorator.

class demo:

 @staticmethod

 def add(a,b):

Python Programming Simplified

280

 return a+b

print("Called using class=",demo.add(1,4))

print("Called using object=",demo().add(3,4))

OUTPUT:

Called using class= 5

Called using object= 7

 As you can see in the code, the @staticmethod decorator must be placed just before the function

definition and that’s it. Much simpler that using staticmethod() way.

Why Static Methods

Static methods are useful when you want some utility or helper method having logic pertaining to class

and not bound to any object. Let’s take an example to understand this.

class Emp:

 @staticmethod

 def check_full_name(name):

 names = name.split(' ')

 return len(names) > 1

name1="Ravi Sharma"

name2="Ravi"

print(Emp.check_full_name(name1))

print(Emp.check_full_name(name2))

OUTPUT:

True

False

The static method check_full_name checks any name is full or just first name. It splits the input name

on space and if the length of returned list is is more than 1 then name is full name else not a full name.

Quick Recap

Lets conclude this topic by revising about static method. When we need some functionality not w.r.t an

Object but w.r.t the complete class, we can make a method static. This offers advantage in terms of

creating helper methods which are not bind to any object. Finally, note that in a static method, we

don’t need the self to be passed as the first argument.

11.8 Class Method

The class method is similar to static method with the difference that it belongs to a class as whole and

can modify the properties of class members. The parameter that is passed automatically when class

method is called is popularly written as cls and this is uninstantiated class itself. It will be clear in

example.

There are two methods to create class methods:

⚫ Using classmethod()

Python Programming Simplified

281

⚫ Using @classmethod

Lets see one example using classmethod().

class demo:

 count = 0

 def show(cls):

 print('The count is:', cls.count)

create show class method

demo.show = classmethod(demo.show)

demo.show()

demo().show()

OUTPUT:

The count is: 0

The count is: 0

 The show method in class is converted to class method using classmethod function and last two lines

calls the show method: one using class and second using object. The difference from static method is

that class method show is able to use class member count using cls argument that was not possible in

static method.

That was a trivial example of classmethod. Lets see one more practical example, but this time using

@classmethod decorator. It is similar to @staticclass decorator.

class Emp:

 def __init__(self,fname,lname):

 self.fname=fname

 self.lname=lname

 @classmethod

 def from_string(cls, name):

 first_name, last_name = map(str, name.split(' '))

 emp = cls(first_name, last_name)

 return emp

 def __str__(self):

 return f"{self.fname} {self.lname}"

e1 = Emp.from_string('Ravi Sharma')

e2=Emp("pari","singhal")

print(e1)

print(e2)

OUTPUT:

Ravi Sharma

pari Singhal

 I’ll concentrate mainly on class method from_string. The method takes two parameters:cls and name.

This method is a kind of factory method for the production of objects of class Emp. That is instead of

using init method for object creattion, we can use this method. The name argument method supplied to

Python Programming Simplified

282

this method is a fullname. Inside the method the name is split, firstname and last name is stored in local

variables. Using these first_name and last_name and cls (represent Emp here) an object is constructed :

cls(first_name,last_name) and returned as emp. Internally the line cls(first_name,last_name) is

equivalent to Emp(first_name,last_name).

Outside the class the usage is shown as: e1 = Emp.from_string('Ravi Sharma'). The advantage of using

factory method is that If we decide to rename this class at some point we won’t have to remember

updating the constructor name in a classmethod factory methods. Note internally this syntax make call

to the init method and without init method in the class with required number of arguments, it won’t

work.

Quick Recap

The @classmethod decorator is used to create factory methods as any input can be passed to them and

it can create objects based on the provided inputs. Using this decorator, it is possible to create as many

constructors for a class which behaves as factory constructors. Finally classmethod takes a reference to

class as cls that can be used to access class members also.

11.9 Ponderable Points

1. A class is the basic unit of encapsulation and abstraction. The class binds together data and

methods which work on data.

2. An empty class in python can be created by just writing pass as body of the class.

3. A variable of class type is known as an object.

4. Creation of object creates memory space for the object which depends upon size of the data

members of the class.

5. The self argument to a method is simply a reference to the object that the method is being

invoked on or reference to the current object (equivalent to this in C++ and Java).

6. . Python has the concept of constructor but in practice it make use of __init__ method(double

underscore to either side of init) for initializing the object.

7. The init method (initializer) cannot be overloaded.

8. Objects can be passed to functions and can be returned also.

9. Like array of any basic data types, we can create array of objects of any class.

10. Only one copy of static data members is available which is shared among all the objects created.

11. Static methods in Python are bound to a class rather than the objects for that class.

12. there is no self argument is passed for static methods, static methods cannot modify the state of an

object.

13. The class method is similar to static method with the difference that it belongs to a class as whole and

can modify the properties of class members

Python Programming Simplified

283

12. Inheritance

12.1 Introduction

The term inheritance refers to the fact that one class can inherit part or all its structure and behavior

from another class. Inheritance provides the idea of re-usability i.e. code once written can be used again

& again in number of new classes. The class that does the inheriting is said to be a subclass of the class

from which it inherits. If class B is a subclass of class A, we also say that class A is a super class of

class B. (Sometimes the terms derived class and base class are used instead of subclass and super

class.) A subclass can add to the structure and behavior that it inherits. It can also replace or modify

inherited behavior (though not inherited structure). The relationship between subclass and super class is

sometimes shown by a diagram in which the subclass is shown below, and connected to, its super class.

In Python, when you create a new class, you can declare that it is a subclass of an existing class. If you

are defining a class named "B" and you want it to be a subclass of a class named "A", you will be

writing:

class B(A):

#functions and fields

12. 2 Types of Inheritance

In general inheritance is of 5 types.

1. Single level Inheritance

2. Multilevel Inheritance

3. Multiple Inheritance

4. Hierarchical Inheritance

Python Programming Simplified

284

5. Hybrid Inheritance

The syntax of deriving a new class from an already existing class is as shown:

class newclassname(oldclassname):

#functions and fields

where class is the keyword used to create a class, new_class_name is the name of new derived class.

old_class_name is the name of an already existing class. It may be a user defined or a built-in class.

12.2.1 Single level inheritance

In single level inheritance we have just one base class and one derived class. It is represented as:

In Python code this can be written as:

class base:

 #data members and functions

class derived(base):

#data members and functions

12.2.2 Multilevel inheritance

In multilevel inheritance we have one base class and one

derived class at one level. At the next level the derived class

becomes base class for the next derived class and so on. This is

as shown below:

class A:

pass

class B(A):

pass

class C(B):

Python Programming Simplified

285

pass

class D(C):

pass

An example program is given above: The class A and class B together forms one level, class B and

class C together forms another level and so on. For class B, class A is the parent and for class C, class

B is the parent thus in this inheritance level we can say that A is the grandparent of class C and class C

is the grandchild of class A.

12.2.3 Multiple Inheritance

In a multiple inheritance a child can have more than parent i.e. a child can inherit properties from more

than one class. Diagrammatically this is as shown:

That is in Python you can write.

class A:

pass

class B:

pass

 class C(A,B):

pass

12.2.4 Hierarchical Inheritance

In this type of inheritance multiple classes share the same base class. That is number of classes inherits

the properties of one common base class. The derived classes again may become base class for other

classes. This is as shown:

Python Programming Simplified

286

For example a university has number of colleges under its affiliation. Each college may use the

university name, the chairperson name, its address, phone number etc.

There are number of properties or features which a vehicle posses. The common properties of all the

vehicle may be put under one class vehicle and different classes like two-wheeler, four-wheeler, three-

wheeler can inherit the vehicle class.

As another example in an engineering college various department be termed as various classes which

may have one parent class common, the name of engineering college. Again For each department there

may be various classes like Lab_staff, Faculty class etc. In Python code the first level can be seen as

follows:

class A:

pass

class B(A): class C(A): class D(A):

 pass pass pass

12.2.5 Hybrid Inheritance

Consider the figure as shown below:

For the first half of the figure, we have hierarchical inheritance as shown by breaking the figure:

Python Programming Simplified

287

In the second half we have multiple inheritance as shown in the figure:

Combining them as shown in fig 1 we have hybrid inheritance.

The second figure for hybrid inheritance may be viewed as :

12.3 Single and Multilevel Inheritance in Python

The concept of single level and multilevel have been discussed earlier. In this section we see practical

examples in python. Lets start with a very basic example of single level inheritance.

Python Programming Simplified

288

class A:
 def showA(self):
 print("Show from A")

class B(A):
 pass

if __name__=="__main__":
 obj=B()

obj.showA()

OUTPUT:

Show from A

We have a class A in which a single function showA has been defined. The line class B(A) inherits

class A into class B. That is it tells Python interpreter that B is a new class and we are inheriting class A

in class B. This makes A as a parent of class B. The class B is also known as derived class and class A

as base class. In the class B we have not defined any data or function, so it contains only inherited

members from class A (in this case only function showA). In the main we create an object of class B

and call the function showA which was inherited from class A. The if condition is as stated in previous

chapter is only when this file is treated as for execution and not for importing.In case you don’t like this

if now it can be safely removed.

Lets modify the above code to add a member function in class B also.

class A:

 def showA(self):

 print("Show from A")

class B(A):

 def showB(self):

 print("Show from B")

if __name__=="__main__":

 obj1=B()

 obj1.showA()

 obj1.showB()

OUTPUT:

Show from A

Show from B

The class B now has two member function. One of its own (showB) and other is inherited from its

parent(class A). Outside the class in if block we create an object of class B and call both the functions

using this object. Note in case you want to create object of class A and call its method, you can. But in

inheritance, object of usually derived class is created and methods are called using this object.

NOTE: If you have come from C++/Java background, you may be surprised to see that there is no

notion of visibility modifier like: public/private/protected. Just plain inheritance.

Python Programming Simplified

289

In the previous two examples we had worked with just methods inside the class. Lets include some data

members in both the class.

class A:

 def inputA(self,x):

 self.x=x

 def showA(self):

 print("From A x=",self.x)

class B(A):

 def inputB(self, y):

 self.y = y

 def showB(self):

 self.showA()

 print("From B y=", self.y)

if __name__=="__main__":

 obj=B()

 obj.inputA(10)

 obj.inputB(20)

 obj.showB()

OUTPUT:

From A x= 10

From B y= 20

Both the class A and B have one data members x and y respectively. In both the classes we have

methods for taking input and displaying the data member. In the showB method we have called the

showA method of class A because of inheritance. In the main we have just created one object of class B

and called all required methods.

The showA can be removed if desired and showB can be modified as:

def showB(self):

 print("From A x=", self.x)

 print("From B y=", self.y)

The next example is a real-world example where from Area we find Volume of a room or any similar

object.

class Area:

 def input1(self):

 self.l=int(input("Enter length: "))

 self.b=int(input("Enter breadth: "))

 def area(self):

 return self.l*self.b

Python Programming Simplified

290

class Volume(Area):

 def input2(self):

 self.input1()

 self.h = int(input("Enter height: "))

 def show(self):

 print("Area= ",self.area())

 print("Volume= ",self.area()*self.h)

if __name__=="__main__":

 V=Volume()

 V.input2()

 V.show()

OUTPUT:

Enter length: 12

Enter breadth: 10

Enter height: 5

Area= 120

Volume= 600

In the class Area we have two data members l and b. Function input1 takes input from keyboard into

these data items directly. The area function returns area of the rectangle. The class Volume inherits

class Area. This class Volume contains one data member h. The class calculates area directly by

calling the inherited area method. The volume is calculated by just multiplying area by height h. Note

we have called only the derived class function input2 inside the if block. This function in turn calls

input1 of the Area class and takes input from keyboard. The function show calculates area and volume

and displays the same.

12.4 Multilevel Inheritance

Multilevel inheritance was discussed earlier in this chapter. Here we see some practical examples in

python.

class A:

 def show1(self):

 print("show of A")

class B(A):

 def show2(self):

 print("show of B")

class C(B):

 def show3(self):

 self.show1()

 self.show2()

 print("show of C")

obj=C()

obj.show3()

OUTPUT:

Python Programming Simplified

291

show of A

show of B

show of C

Class A and B together make one level of inheritance as A is a parent class for B. Similarly class C and

class B make one level of inheritance as class B is a parent class for class C. It makes class A as

grandparent for class C. Through this two level of inheritance class C can have access to functions of

class A and class B.

Last example of this type of inheritance is:

class Bird:

 def speak(self):

 print("Bird is Chirping")

class Cuckoo(Bird):

 def color(self):

 print("Cuckoo color is black")

class CuckooChild(Cuckoo):

 def home(self):

 print("In another bird's nest")

c = CuckooChild()

c.color()

c.speak()

c.home()

OUTPUT:

Cuckoo color is black

Bird Chirping

In another bird's nest

Class Bird is parent class for class Cuckoo and from Cuckoo class we derive one class CuckooChild.

This creates two level of inheritance. The functions inside the class are self explanatory. An object of

CuckooChild class have access to class Cuckoo and class Bird (indirectly).

12.5 Multiple Inheritance

Multiple inheritance has been explained in the beginning of the chapter. Recall In a multiple-

inheritance graph, the derived classes may have several direct base classes to access the functionality of

parent classes. In practice it is not recommended to use this type of inheritance because of problems

associated with it that we will see.

Here we present few examples of multiple inheritance. Lets start with a very basic example:

class A:

 def show1(self):

 print("show of A")

class B:

 def show2(self):

 print("show of B")

Python Programming Simplified

292

class C(A,B):

 pass

obj=C()

obj.show1()

obj.show2()

OUTPUT:

show of A

show of B

The code is simple. Here we have two base classes: class A and class B. Both the classes have one

member function each. The class C inherits both the classes A and B. As it has two parents the function

show1 and show2 can easily be accessed by an object of class C. Outside the classes (in virtual main

function) an object of class C is created and both the functions are called.

It was a trivial example of multiple inheritance. Lets change the above code a bit and keep both the

function name same: show.

class A:

 def show(self):

 print("show of A")

class B:

 def show(self):

 print("show of B")

class C(A,B):

 pass

obj=C()

obj.show()

obj.show()

OUTPUT:

show of A

show of A

When both the parent classes has same function name, only one copy of the function from first

inherited class (here A) is used in the class C. That’s why the output. If you change the code as:

class C(B,A):

pass

Then show function of class B is called. This is a kind of ambiguity in function call and that’s why

multiple inheritance is not recommended by many programmers. Further Java programming language

doesn’t support multiple inheritance through classes. One specific problem associated with this type of

inheritance known as diamond problem will be covered later in this chapter.

Further if you have a function by the same name in class C (method overriding will be covered later)

then show function of class C will be called and if we try to use the function show of class A or B, lets

see what happens?

class A:

 def show(self):

 print("show of A")

Python Programming Simplified

293

class B:

 def show(self):

 print("show of B")

class C(B,A):

 def show(self):

 self.show()

 print("show of C")

obj=C()

obj.show()

OUTPUT:

(Some code not shown intentionally)

RecursionError: maximum recursion depth exceeded

In the show function of class C, call self.show() calls to show function of C class and causes

uncontrollable recursion. During recursion function addresses are stored in stacks and as this continues

till the stack becomes full. Once stacks become full error is raised.

class base:

 def input1(self):

 self.b=int(input("Enter the base: "))

 def show1(self):

 print("base=" , self.b)

class exponent:

 def input2(self):

 self.e=int(input("Enter the exponent: "))

 def show2(self):

 print("exponent=",self.e)

class power(base,exponent):

 def input(self):

 self.input1()

 self.input2()

 def pow(self):

 po=1

 for i in range(1,self.e+1):

 po=po*self.b

 return po

 def show(self):

 self.show1()

 self.show2()

 print(self.b,"^",self.e,"= ",self.pow())

if __name__=="__main__":

Python Programming Simplified

294

 obj=power()

 obj.input()

 obj.show()

OUTPUT:

Enter the base: 3

Enter the exponent: 5

base= 3

exponent= 5

3 ^ 5 = 243

The code is simple. In the base class we have a data member b which represent base and in the class

exponent we have a data member e which represent exponent. These two classes are inherited by class

power which has two functions input and show. In the input of this class the two input functions of

class base and exponent is called. In the pow function we find the power using for loop. This functions

is used in show function along with show1 and show2 functions of class base and exponent respectively.

The other example which is our last example for multiple inheritance is where we have two classes for

Internal and External Marks for the student. These two are combined to calculate final marks.

import sys

class Internal:

 def input1(self):

 self.i_marks=int(input("Enter the marks (max 30): "))

 if (not (self.i_marks >= 0 and self.i_marks <= 30)):

 print("Invalid Marks")

 sys.exit(0)

 def show1(self):

 print("Internal Marks=" , self.i_marks)

class External:

 def input2(self):

 self.e_marks = int(input("Enter the marks (max 70): "))

 if (not (self.e_marks >= 0 and self.e_marks <= 70)):

 print("Invalid Marks")

 sys.exit(0)

 def show2(self):

 print("External Marks=", self.e_marks)

class Final(Internal,External):

 def input(self):

 self.input1()

 self.input2()

 def total(self):

 return self.i_marks+self.e_marks

 def show(self):

Python Programming Simplified

295

 self.show1()

 self.show2()

 print("Final Marks= ",self.total())

if __name__=="__main__":

 obj=Final()

 obj.input()

 obj.show()

OUTPUT:

Enter the marks (max 30): 27

Enter the marks (max 70): 67

Internal Marks= 27

External Marks= 67

Final Marks= 94

For student’s internal marks we have a class Internal and for student’s external marks we have a class

External. The internal marks must be between 0 and 30 and external marks must be between 0 and 70.

In class Internal internal marks are stored in i_marks and in class External external marks are stored in

e_marks.These two classes are inherited by class Final which finds the total marks and display all three

marks: internal, external and total.

12.6 Hierarchical Inheritance

This type of inheritance was explained earlier in the chapter. When number of classes has a direct

access to one common class, then this type of inheritance is visible. The main base class can be

modified alone if required and all derived classes will see that effect. Here we present few examples of

this type of inheritance.

Lets start with a very basic example where one class is a parent for three other classes:

class A:

 def showA(self):

 print("show of A")

class B(A):

 def showB(self):

 print("show of B")

class C(A):

 def showC(self):

 print("show of C")

class D(A):

 def showD(self):

 print("show of D")

if __name__=="__main__":

Python Programming Simplified

296

 print("From object of B class")

 obj1=B()

 obj1.showA()

 obj1.showB()

 print("From object of C class")

 obj1 = C()

 obj1.showA()

 obj1.showC()

 print("From object of D class")

 obj1 = D()

 obj1.showA()

 obj1.showD()

 OUTPUT:

From object of B class

show of A

show of B

From object of C class

show of A

show of C

From object of D class

show of A

show of D

 This is a very trivial example where we have one class A that is parent of all other classes B,C,D. For this

reason the function showA can be used by all other classes along with their own functions.

The other example we see is where number of colleges are affiliated to a single university. Thus single

university will act as a parent to all affiliated colleges.

class University:

 uname="Rajasthan Technical University"

class college1(University):

 cname="SVC"

 def show_college1(cls):

 print("College Name=",cls.cname)

 print("Affiliated to=", cls.uname)

class college2(University):

 cname="LIET"

 def show_college2(cls):

 print("College Name=",cls.cname)

 print("Affiliated to=", cls.uname)

if __name__=="__main__":

 c1=college1()

 c1.show_college1()

 c2=college2()

 c2.show_college2()

OUTPUT:

College Name= SVC

Python Programming Simplified

297

Affiliated to= Rajasthan Technical University

College Name= LIET

Affiliated to= Rajasthan Technical University

 The program is so simple. We have University class which has just one class data member uname that

stores name of the university . This class is inherited by two classes college1 and college2. The two

classes display their name and the university to which they are affiliated.

12.7 Method Overriding

In method overriding a base class method is overridden in the derived class. That is the same method is

written with the same signature as of the base class method but different implementation. Method

overriding in often used in inheritance to override the base class implementation of the method and

providing its own implementation. In method overloading arguments and type of arguments are used to

distinguish between two functions, but in method overriding no such distinction can be made.In method

overriding the signature of the two methods must match. This is shown in the program given below.

class A:

 def show(self):

 print("show of A")

class B(A):

 def show(self):

 print("show of B")

class C(A):

 pass

if __name__=="__main__":

 obj1 = B()

 obj1.show()

 obj1=C()

 obj1.show()

OUTPUT:

show of B

show of A

In the class B function show is overridden. The function show of class A is now hidden. From the main

(in if block) when statement obj1.show executes it calls the show function of the class B. The class A

is also inherited by class C but it does not overiride the show method of class A so when obj1.show()

executes in last line it search for the method show in class C but it is not there so it look for the same in

in its immediate parent class. It finds in class A and show method of class A gets called.

Lets have one more example with two functions in parent class and two derived class.

class A:

 def show(self):

 print("show of A")

 def display(self):

 print("display of A")

class B(A):

 def show(self):

Python Programming Simplified

298

 print("show of B")

class C(A):

 def display(self):

 print("display of C")

if __name__=="__main__":

 Lobjects =[B(),C()]

 for obj in Lobjects:

 obj.show()

 obj.display()

OUTPUT:

show of B

display of A

show of A

display of C

The class A has two methods : show and display. In the class B function show is overridden but display

is not. The function show of class A is now hidden. In class C display function is overridden but show

is not. In the main (in if block) we have a list of two objects of class B and class C. In the first iteration

the obj represent object of class B and show and display method are called. The show function of class

B and display function of class A is called. In the next iteration obj represent object of class C and

show function of class A and display function of class C is called. The explanation of the same was

given in previous code.

12.8 The super() method

In cases where you want to call the base class version of the function which is overridden in the derived

class, you can use the super() method in python. The super() actually returns a temporary object of

base class object. Using this object you can call the methods of base class. For example consider the

following code:

class A:

 def show(self):

 print("show of A")

class B(A):

 def show(self):

 super().show()

 print("show of B")

if __name__=="__main__":

 obj=B()

 obj.show()

In the above case inside show of class B if you simply write show (as written), then it will call itself

and recursion will follow(as discussed earlier). To call the base class version we can write super(

).show which means show of class A will be called. You can also use super() to refer to any of the

method or field of the base class or can even use it for calling constructor.

Lets see one more example with some data members in each class.

Python Programming Simplified

299

class A:

 def input1(self,num):

 self.num1=num

class B(A):

 def input2(self,num1,num2):

 super().input1(num1)

 self.num2=num2

 def show(self):

 print("num of class A=",self.num1)

 print("num of class B=",self.num2)

if __name__=="__main__":

 obj=B()

 obj.input2(10,20)

 obj.show()

OUTPUT:

num of class A= 10

num of class B= 20

In the class B the input2 function takes two integer parameters: num1 and num2. The parameter num1

is passed to input1 function of class A using super() and num2 assigned to num2 of class B. In the show

we display both num1 of class A and num2 of class B.

More examples of super method will be shown in the next section.

12.9 Constructor (Initializer) & Inheritance

When constructors are present both in base and derived classes then how they are called, how values

are passed from derived class to base class, that we will see in this section. We will also make use of

super method in calling constructors of base class. Assume a small example of single level inheritance

in which class A is inherited by class B. Both the classes have their default constructors. When an

object of class B is created , it calls the constructor of class B, but as this class B has got A as its parent

class, constructor of class A will be called first , then constructor of class B will be called. Why this is

so? The reason is simple. When derived class has inherited base class, then obviously it will be using

the data members from base class. Now without calling the constructor of base class, data members of

base class will not have been initialized and if derived class uses the uninitialized data members of base

class, unexpected results may follow. Calling a constructor of base class first allows base class to

properly set up its data members so that they can be used by derived classes.

See few programs.

class A:

 def __init__(self):

 print("construtor of class A")

class B(A):

 def __init__(self):

 print("construtor of class B")

if __name__=="__main__":

Python Programming Simplified

300

 B()

OUTPUT:

constructor of class B

 The init method act as constructor in python. Both the classes B and A have their own init method and

class B has class A as its parent. When an object of class B is created in if block it calls only the

constructor of class B and not of class A. To make a call to constructor of class A, we have to make use

of super method as shown below in modified code.

class A:

 def __init__(self):

 print("construtor of class A")

class B(A):

 def __init__(self):

 super().__init__()

 print("construtor of class B")

if __name__=="__main__":

 B()

OUTPUT:

construtor of class A

construtor of class B

The code is easy to understand. We are just calling init method of parent class using super() method.

The real use of super method comes into picture when we want to use some inherited members in

derived class and those members of parent has not set up. In that case we have to set them up using a

call to init method in the init method of derived method with the help of super method. See an example

below:

class A:

 def __init__(self,a):

 self.a=a

class B(A):

 def __init__(self,a,b):

 super().__init__(a)

 self.b=b

 def show(self):

 print("a=",self.a)

 print("b=", self.b)

 print("c=", self.a+self.b)

if __name__=="__main__":

 obj=B(10,20)

 obj.show()

OUTPUT:

a= 10

b= 20

Python Programming Simplified

301

c= 30

 In the main we call the init method of class B using syntax: obj=B(10,20). Inside the constructor of B

class, value a is passed into the init method of class A using super() and b is assigned to self.b. Once

this initialization is done members a and b can be used inside the show method.

What if you try to use the data member a of class A without initializing it using a call

super().__init__(a)? It will be give you error that B class has no data member a. See the code without

show method.

class A:

 def __init__(self,a):

 self.a=a

class B(A):

 def __init__(self,a,b):

 self.b=b

 c=self.a+self.b

 super().__init__(a)

 print("c=",c)

if __name__=="__main__":

 obj=B(10,20)

OUTPUT:

AttributeError: 'B' object has no attribute 'a'

 We are using data member a in second line of init method of class B without properly setting up using

super() method. That’s why the error.

Having understood basics of super method in calling the init method through inheritance. Lets see an

example of super method in multilevel inheritance.

class A:

 def __init__(self):

 print("construtor of class A")

class B(A):

 def __init__(self):

 super().__init__()

 print("construtor of class B")

class C(B):

 def __init__(self):

 super().__init__()

 print("construtor of class C")

if __name__=="__main__":

 C()

OUTPUT:

construtor of class A

Python Programming Simplified

302

construtor of class B

construtor of class C

 class A is inherited by class B and class B is inherited by class C. In both the init method of class B

and class C, init method of their immediate parent class is called. That’s why the output.

In the case of multiple inheritance, first inherited class’s init method will be called first.

class A:

 def __init__(self):

 print("construtor of class A")

class B:

 def __init__(self):

 print("construtor of class B")

class C(A,B):

 def __init__(self):

 super().__init__()

 print("construtor of class C")

if __name__=="__main__":

 C()

OUTPUT:

construtor of class A

construtor of class C

 When class C is created it inherits class A first then class B. So when an object of class C is created as

C() in if block, it first calls its own init method and then using super it calls init method of class A.

After printing it comes back and displays the content of print method.

As a final example of inheritance with super, lets take a practical example of rectangle and sqaure class.

class Rect:

 def __init__(self, l, w):

 self.l = l

 self.w = w

 def area(self):

 return self.l * self.w

class Sqr(Rect):

 def __init__(self, l):

 super().__init__(l, l)

if __name__=="__main__":

 r=Rect(10,20)

 s=Sqr(10)

 print("Area of Rectangle=",r.area())

Python Programming Simplified

303

 print("Area of Square=", s.area())

OUTPUT:

Area of Rectangle= 200

Area of Square= 100

 The Rect class has two data members l and w that represents length and width and one method area

that calculates area of the rectangle. The square is a special type of rectangle where length and width

are same. Thus Sqr class inherits Rect class and make call to init method of Rect class using super(). In

the main if block two objects each of Rect and Sqr is created and both calls the same method area. But

for object r in calculating area l=10 and w=20 is used whereas for object s l=w=10 is used.

12.10 Abstract base class

An abstract class is one that is not used to construct objects, but only as a basis for making subclasses.

An abstract class exists only to express the common properties of all its subclasses. An abstract class is

a class that leaves one or more method implementations unspecified by declaring one or more methods

abstract. An abstract method has no body i.e., no implementation (partially true) A subclass is required

to override the abstract method and provide an implementation. Hence, an abstract class is incomplete

and cannot be instantiated, but can be used as a base class.

An abstract class usually has one or more abstract methods. This is a method that is incomplete; it has

only a declaration and no method body. Python provides module abc for abstract base classes. From

this module we need to import ABC class and abstractmethod as decorator. Here is the syntax for an

abstract method declaration in abstract class demo:

from abc import ABC,abstractmethod

class demo(ABC):

 @abstractmethod

 def show(self):

 pass

A class containing abstract methods is called an abstract class. If a class contains one or more abstract

methods, the class itself must be qualified as abstract. (Otherwise, the interpreter gives you an error

message.) Objects of an abstract class cannot be created so an abstract class must be inherited by some

other class. The derived class must provide the implementation of all abstract methods declared in the

abstract class. If the derived class does not provide implementation for the abstract functions, the it

must be declared as abstract.

It’s possible to create a class as abstract without including any abstract methods. This is useful

when you’ve got a class in which it doesn’t make sense to have any abstract methods, and yet you want

to prevent any instances of that class.

If an abstract class is incomplete, what is the interpreter supposed to do when someone tries to make an

object of that class? It cannot safely create an object of an abstract class, so you get an error message

Python Programming Simplified

304

from the compiler. This way, the interpreter ensures the purity of the abstract class, and you don’t need

to worry about misusing it.

If you inherit from an abstract class and you want to make objects of the new type, you must provide

method definitions for all the abstract methods in the base class. If you don’t (and you may choose not

to), then the derived class is also abstract,

It’s possible to create a class as abstract without including any abstract methods. This is useful when

you’ve got a class in which it doesn’t make sense to have any abstract methods, and yet you want to

prevent any instances of that class.

Let’s see a small example program of abstract class.

from abc import ABC, abstractmethod

class A(ABC):

 @abstractmethod

 def show(self):

 pass

class B(A):

 def show(self):

 print("Show of B")

class C(A):

 def show(self):

 print("Show of C")

if __name__=="__main__":

 B().show()

 C().show()

OUTPUT:

Show of B

Show of C

 To make a class as abstract it must have class ABC as its parent class. An abstract class can have

abstract or non abstract method or both. Here we have just one abstract method show in class A. The

method is made abstract by using the decorator @abstractmethod. Once a method is become abstract it

must be overridden by the derived class else error will be flashed. Both class B and C override the show

method. In the main if block we just create dynamic objects of class B and C and call the show method

of each class.

Lets modify the above code a bit so that C class does not override the show method.

from abc import ABC, abstractmethod

class A(ABC):

 @abstractmethod

 def show(self):

 pass

Python Programming Simplified

305

class B(A):

 def show(self):

 print("Show of B")

class C(A):

 pass

if __name__=="__main__":

 B().show()

 C().show()

OUTPUT:

TypeError: Can't instantiate abstract class C with abstract methods show

As explained earlier the class C must override the show function inherited from class A but it is not

done in class C and that’s why error is flashed.

Lets modify the code again and this time we remove the decorator @abstractmethod in class A before

show function.

from abc import ABC, abstractmethod

class A(ABC):

 def show(self):

 print("Show of A")

class B(A):

 def show(self):

 print("Show of B")

class C(A):

 pass

if __name__=="__main__":

 B().show()

 C().show()

OUTPUT:

Show of B

Show of A

 We stated earlier that an abstract class may or may not have abstract methods. Here the class A is

abstract but it does not have any abstract method. It is now up to derived class as to whether override

the show method or not. B class override the method and C class does not. So when B().show() call is

made it calls the show method of class B and when C().show() call is made it calls the show method of

class A. If you make show method is class A as empty by writing just pass, C.show() will call the

method of A class but will not display anything.

Having understood concept of abstract class and abstract method, lets write a code where we have both

abstract and non abstract method in parent class.

from abc import ABC, abstractmethod

Python Programming Simplified

306

class A(ABC):

 def show(self):

 print("Show of A")

 @abstractmethod

 def display(self):

 print("display of A")

class B(A):

 def display(self):

 print("display of B")

class C(A):

 def display(self):

 print("display of C")

 def show(self):

 print("Show of C")

if __name__=="__main__":

 L=[B(),C()]

 for obj in L:

 obj.show()

 obj.display()

OUTPUT:

Show of A

display of B

Show of C

display of C

I leave it to you to figure out the output of the above code.

The above few python script must have given you clear idea of what is an abstract class and abstract

method is and how to use them in python. But we have covered some real world scenario where

abstract class and method would be useful. Let’s write some python script code where this concept

would be applicable.

from abc import ABC, abstractmethod

class Insect(ABC):

 @abstractmethod

 def flystatus(self):

 pass

class Cockroach(Insect):

 def flystatus(self):

 print(self.__class__.__name__," can fly")

class Termite(Insect):

 def flystatus(self):

 print(self.__class__.__name__," cannot fly")

Python Programming Simplified

307

class Grasshopper(Insect):

 def flystatus(self):

 print(self.__class__.__name__," can fly")

class Ant(Insect):

 def flystatus(self):

 print(self.__class__.__name__," cannot fly")

if __name__=="__main__":

 L=[Cockroach(),Termite(),Grasshopper(),Ant()]

 for obj in L:

 obj.flystatus()

OUTPUT:

Cockroach can fly

Termite cannot fly

Grasshopper can fly

Ant cannot fly

 The abstract class Insect declares one abstract function flystatus. Any class which inherits this class

has to redefine this function and tell his/her flying status i.e. whether he/she can fly or not. This class

Insect is inherited by 4 different classes viz. Cockroach, Termite, Grasshopper and Ant. Each class does

provide implementation of function flystatus. In the main we create a list of objects of each of the

derived class. Using for loop we call the flystatus method of each class. First iteration the object is of

Cockroach class , next it is of Termite() and so on. Thus flystatus method of corresponding class in

each iteration is called.

One final example of abstract class is also a real world example where we create one abstract class

Figure. Each figure has to tell how many sides it has along with its area. Lets write the code:

from abc import ABC, abstractmethod

class Figure(ABC):

 def __init__(self, s1, s2):

 self.s1 = s1

 self.s2 = s2

 @abstractmethod

 def area(self):

 pass

 @abstractmethod

 def tellsides(self):

 pass

class Rectangle(Figure):

 sides=4

 def __init__(self,s1,s2):

Python Programming Simplified

308

 super().__init__(s1,s2)

 def tellsides(self):

 return self.sides

 def area(self):

 return self.s1*self.s2

class Triangle(Figure):

 sides=3

 def __init__(self,s1,s2):

 super().__init__(s1,s2)

 def tellsides(self):

 return self.sides

 def area(self):

 return self.s1*self.s2*0.5

class Square(Figure):

 sides=3

 def __init__(self,s):

 super().__init__(s,s)

 def tellsides(self):

 return self.sides

 def area(self):

 return self.s1*self.s2

if __name__ == "__main__":

 L = [Rectangle(5,6),Triangle(5,8),Square(5)]

 for obj in L:

 print(obj.__class__.__name__," has ",obj.tellsides()," sides")

 print("Area of ",obj.__class__.__name__," is " ,obj.area())

OUTPUT:

Rectangle has 4 sides

Area of Rectangle is 30

Triangle has 3 sides

Area of Triangle is 20.0

Square has 3 sides

Area of Square is 25

 In the program we have an abstract base class Figure. The class has two data members s1 and s2

which stands for two sides of the figure. The class has two abstract methods area and tellsides. Each

geometrical figure which inherits this class must calculate the area and have to tell the number of sides

it has. The class also has constructor which takes two parameters s1 and s2 and assign to class

members s1 and s2.

Python Programming Simplified

309

The class is inherited by three classes Rectangle ,Trinagle and Square which provide the

implementation of area and tellsides. All three uses a class member sides which represents number of

sides a figure has.

In the main if block object of class Rectangle, Triangle and Square are created using constructors

and dimension of sides is passed.All objects are placed as element of list L. In the call Rectangle(5,6)

and Triangle(5,8), Square(5) constructor of Figure class is called and s1 and s2 gets their value. Each

iteration of for loop takes one of these objects and calls their respective methods. The syntax:

obj.__class__.__name__ has been used to find class name of the object in current iteration.

12.11 Visibility Modifiers in Python

Most object-oriented programming languages like C++,Java C# have a concept of access control

through visibility modifiers: private, protected and public. Data members are usually marked as private

meaning only the objects of the class can access them within the class. Protected members are available

inside the class and in any of the derived classes. The public members are accessible everywhere. But

all this is not available in python. Python has no concept of visibility modifier or access control.

But there are some python secrets which if others have no idea than the concept of private members

may work in python. First lets see how can we make a member as private (not in true sense).

class demo:

 def __init__(self,a,b):

 self.__a=a

 self.b=b

d=demo(10,20)

print(d.__a)

OUTPUT:

AttributeError: 'demo' object has no attribute '__a'

 Prefixing a class member by __ (double underscore) prevents it from accessing it outside the class. The

member __a is now become secret. In Pycharm editor if you write d. it will show you a drop down box

but will not show you __a member. It is only possible if you remember the private data member name

is __a.

One more thing you must understand with respect to this double underscore notation is that it allow us

to set the values for __a without error but it doesn’t get reflected back. Confused ! don’t worry. See the

code below with output.

class demo:

 def __init__(self,a,b):

 self.__a=a

 self.b=b

 def show(self):

 print(self.__a,self.b)

d=demo(10,20)

Python Programming Simplified

310

d.__a=100

d.show()

OUTPUT:

10 20

As you can see even after we try to change the value of __a by writing d.__a=100, it actually does not

change the value of __a. This is visible when we call show function to print the values of __a and b.

Further no error is flashed.

Now we reveal the secret as to how the to get access to that hidden member __a.

class demo:

 def __init__(self,a,b):

 self.__a=a

 self.b=b

 def show(self):

 print(self.__a,self.b)

d=demo(10,20)

d._demo__a=100

d.show()

OUTPUT:

100 20

The syntax to use the hidden member __a outside the class is: d._demo__a

(objectname._classname__attributename). That’s it ! now you can have access to that hidden member.

In python terminology it is known as name mangling. If you use hidden member inside the method of

class, the hidden members are unmangled and accessible but outside the class they are not unmangled

by system interpreter and not visible. The programmer must unmangle them by clearing writing them in

proper syntax. Thus __a can be called as name mangled variable.

In practice most of the programmers have not much to do with single and double underscore and they

rarely make use of these features. In situations only when required use this feature of python otherwise

you can safely ignore it.

12.12 Final class

A final class has the property that it cannot be inherited. When you say that an entire class is final you

state that you don’t want to inherit from this class or allow anyone else to do so. In other words, for

some reason the design of your class is such that there is never a need to make any changes, or for

safety or security reasons you don’t want sub classing.

A simple way to make a class as final class using the module: final_class. The module can be installed

using pip as: pip install final-class. Once installed it can be used as:

from final_class import final

@final

class demo:

 def show(self):

 print("Show of final class demo")

Python Programming Simplified

311

class derived(demo):

 pass

OUTPUT:

TypeError: Subclassing final classes is restricted

 By placing @final decorator the class demo becomes final and it cannot be inherited. When you try to

inherit it as in derived class error will be generated.

12.13 The Diamond Problem

Consider the situation where we have one class A. This class A is inherited by two other classes B and

C. Both these classes are inherited in a new class D. This is as shown in figure given below. In dummy

code form this is as shown below:

class A:

pass

class B(A): class C(A):

pass pass

class D(B,C):

pass

This is called diamond inheritance because of the diamond shape of the class diagram. Why this is also

called as diamond problem ? As can be seen from the figure that data members/functions of class A are

inherited twice to class D. One through class B and second through class C. When any data /function

member of class A is accessed by an object of class D, ambiguity arises as to which data/function

member would be called. One inherited through B or the other inherited through C. This may create

problems in real life situations. For examples transaction can be called twice and money can be debited

twice from the account. Lets understand this using a simple example:

class A:

 Acalls=0

 def show(self):

 print("A class called")

 self.Acalls+=1

class B(A):

 Bcalls=0

 def show(self):

Python Programming Simplified

312

 A.show(self)

 print("B class called")

 self.Bcalls+=1

class C(A):

 Ccalls=0

 def show(self):

 A.show(self)

 print("C class called")

 self.Ccalls+=1

class D(B,C):

 Dcalls=0

 def show(self):

 B.show(self)

 C.show(self)

 print("D class called")

 self.Dcalls+=1

if __name__=="__main__":

 d=D()

 d.show()

 print("Number of calls in each Class")

 print(d.Acalls,d.Bcalls,d.Ccalls,d.Dcalls)

OUTPUT:

A class called

B class called

A class called

C class called

D class called

Number of calls in each Class

2 1 1 1

 Class A is inherited by both class B and class C. Both the classes are then inherited by class D. This

creates a diamond inheritance. Each class has one class member to count how many times the function

show has been called. The function show of class A is overridden by each of the derived classes. If you

observe closely the output, you will see that show method of A class has been called twice: One by

class B and another by class C. It is also visible from the count of calls of each class, The value of

Acalls is 2 whereas all others show method call is 1.

To resolve the issue of this multiple calls in case of diamond inheritance, python provides next method

and super method. Lets rewrite the code using super and see the output. Pay close attention to

explanation that follows:

class A:

 Acalls=0

Python Programming Simplified

313

 def show(self):

 print("A class called")

 self.Acalls+=1

class B(A):

 Bcalls=0

 def show(self):

 super().show()

 print("B class called")

 self.Bcalls+=1

class C(A):

 Ccalls=0

 def show(self):

 super().show()

 print("C class called")

 self.Ccalls+=1

class D(B,C):

 Dcalls=0

 def show(self):

 super().show()

 print("D class called")

 self.Dcalls+=1

if __name__=="__main__":

 d=D()

 d.show()

 print("Number of calls in each Class")

 print(d.Acalls,d.Bcalls,d.Ccalls,d.Dcalls)

OUTPUT:

A class called

C class called

B class called

D class called

Number of calls in each Class

1 1 1 1

The d.show() calls show method of D class. The class has two parents B and C. Inside show method of

D class super.show() make call to show method of B class. Now inside show method of B class first

statement is super().show. This call is next method and calls show method of class C (even though C is

not immediate parent of class B). Inside show method of class C super.show() calls show method of

class A. Then print statement inside show method of class C executes. Control then returns to B class

show method. The print statement within B class show method executes. Control then returns to D class

show method and print statement inside D class executes.

Thus next method (internally) together with super method make sure then only copy of show method of

A class called and problem of diamond inheritance is resolved.

Python Programming Simplified

314

Resolving the order of method is known as method resolution order. This can be achieved by calling

method mro on class D as: D.mro(). The preceding call prints:

[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class

'object'>]

Here the last class is object class that is parent class of all classes in python.

12.14 Composition or Containership

We can create object of one class into another and that object will be a member of the class. This type

of relationship between classes is known as has_a relationship or containership as one class contains

object of another class. The inheritance which we have seen till now is considered kind_of or is_a

relationship. Lets see an example of composition:

class A:

 def show(self):

 print("A class called")

class B:

 def __init__(self):

 self.objA=A()

b=B()

b.objA.show()

OUTPUT:

A class called

 In the constructor of A class we have objA as member. This member is assigned an object of class B.

This is composition in python. An object is used directly inside another class without inheritance. Note

how the show method of A class was called.

As another example lets rewrite our Rect and Sqr program using composition.

class Rect:

 def __init__(self, l, w):

 self.l = l

 self.w = w

 def area(self):

 return self.l * self.w

class Sqr:

 def __init__(self, l):

 self.sr=Rect(l,l)

Python Programming Simplified

315

if __name__=="__main__":

 r=Rect(10,20)

 s=Sqr(10)

 print("Area of Rectangle=",r.area())

 print("Area of Square=", s.sr.area())

OUTPUT:

Area of Rectangle= 200

Area of Square= 100

The Sqr class constructor is now has sr its data member and that represents an object of Rect class.

Note how the area method has been called: s.sr.area(). As sr is member of Sqr class and s is an object of

Sqr class, we can call s.sr that represents an object of Rect class.

But what is the need of composition? In situations when you just must use the existing functionality of

base class without any alteration, we can use composition. Otherwise, inheritance would be ideal

choice.

12.15 Ponderable Points

1. Inheritance provides the idea of re-usability i.e., code once written can be used again & again in

number of new classes.

2. There is no notion of visibility modifier like public, private, protected.

3. Python supports multiple inheritance where one class can have multiple parents.

4. In method overriding a base class method is overridden in the derived class. That is the same

method is written with the same signature as of the base class method but different

implementation.

5. In cases where you want to call the base class version of the function which is overridden in the

derived class, you can use the super() method in python

6. An abstract class is one that is not used to construct objects, but only as a basis for making

subclasses.

7. An abstract class usually has one or more abstract methods.

8. The ABC class and @abstractmethod from module abc are must for creating an abstract class.

9. Prefixing a class member by __ (double underscore) prevents it from accessing it outside the

class.

10. A final class has the property that it cannot be inherited.

11. Multiple inheritance and hierarchical inheritance together can cause diamond problem.

12. There are two kinds of relationship: is_a and has_a.

Python Programming Simplified

316

13. EXCEPTION HANDLING

13.1 Introduction

In python errors can be divided into two categories: syntax errors and exceptions. Syntax errors (also

known as parse errors) are errors that occurs during the writing of the program. Most common

examples of syntax errors are missing comma, missing double or single quotes etc. They occur mainly

due to poor understanding of language or writing program without proper concentration to the program.

There are logical errors which are mainly due to improper understanding of the program logic by the

programmer. Logical errors cause the unexpected or unwanted output. Exceptions are runtime errors

which a programmer usually does not expect.

They occurs accidentally which may result in abnormal termination of the program. Python provides

exception handling mechanism which can be used to trap this exception and running programs

smoothly after catching the exception.

Common examples of exceptions are division by zero, opening file which does not exist, insufficient

memory, violating array bounds etc.

13.2 Basis for exception handling

A Program is correct if it accomplishes the task that it was designed to perform. It is robust if it can

handle illegal inputs and other unexpected situations in a reasonable way. For example, consider a

program that is designed to read some numbers from the user and then print the same numbers in sorted

order. The program is correct if it works for any set of input numbers. It is robust if it can also deal with

non-numeric input by, for example, printing an error message and ignoring the bad input. A non-robust

program might crash or give nonsensical output in the same circumstance.

Getting a program to work under ideal circumstances is usually a lot easier than making the program

robust. A robust program can survive unusual or “exceptional” circumstances without crashing.

One approach to writing robust programs is to anticipate the problems that might arise and to include

tests in the program for each possible problem. For example, a program will crash if it tries to use an

array element ARR[i], when i is not within the declared range of indices for the array ARR. A robust

program must anticipate the possibility of a bad index and guard against it. This could be done with an

if statement.

if (i < -len(L) or i>len(L)):

 print("invalid")

 # do something to handle

else:

 # process the list element

 print("valid")

There are some problems with this approach. It is difficult and sometimes impossible to anticipate all

the possible things that might go wrong. It’s not always clear what to do when an error is detected.

Python Programming Simplified

317

Furthermore, trying to anticipate all the possible problems can turn what would otherwise be a straight

forward program into a messy tangle of if statements.

Python provides a neater, more structured alternative method for dealing with errors that can occur

while a program is running. The method is referred to as exception-handling. The word “exception” is

meant to be more general than “error.” It includes any circumstance that arises as the program is

executed which is meant to be treated as an exception to the normal flow of control of the program.

Exception handling is the process to handle the exception if generated by the program at run time. The

aim of exception handling is to write a code which passes exception generated to a routine which can

handle the exception and can take suitable action.

13.3 Exception Hierarchy

The exception hierarchy of exceptions in python is shown in the figure 1.

Figure 13.1: Exception hierarchy in Python

As you can see from figure, the root class of all exceptions is BaseException. The 4 classes that are

derived from this class is GeneratorExit, KeyboardInterrupt, SystemExit and Exception. All the classes

that we use for handling runtime errors are derived from the class Exception. Even user defined

exception class has to make Exception class as its parent class. The reason why child classes of

Exception class is not named as exception classes and as error classes it because of PEP8 (Python

Enhancement Project) convention.

The 3 main classes except Exception are directly derived from BaseException as they present errors

that are usually handled by the python system itself. For example SystemExit is used during a function

call sys.exit to gracefully exit the python program. Similarly KeyboardInterrupt is caused when user

presses Ctrl+C in command line programs. GeneratorExit is also used when there is no more element is

there to generate. Some of derived classes from Exception classes are: LookupError,

ZeroDivisionError, ArithmeticError, NameError, TypeError, SyntaxError etc.

Python Programming Simplified

318

The complete exception hierarchy would be too long to cover here. For details please see python

documentation at this URL. BuiltIn Exceptions and Exception Hierarchy

13.4 Some Examples Of Exceptions

Having said a lot about exceptions, let’s see some examples of exceptions in python without handling

them in python shell. This is shown in table along with explanation.

Python code Examples with output Exception Generated with reason

>>>a,b=10,0

>>> a/b

Traceback (most recent call

last):

 File "<stdin>", line 1,

in <module>

ZeroDivisionError: division

by zero

ZeroDivisionError: division by zero

Value of b is 0 and you cannot divide

a number by 0.

>>> L=[1,2,3,4]

>>> L[5]

Traceback (most recent call

last):

 File "<stdin>", line 1,

in <module>

IndexError: list index out

of range

IndexError: list index out of range

Possible index values for L is -4 to 4.

>>> x=int("23.45")

Traceback (most recent call

last):

 File "<stdin>", line 1,

in <module>

ValueError: invalid literal

for int() with base 10:

'23.45'

ValueError: invalid literal for int()

with base 10: '23.45'. Trying to parse a

float into integer.

y=x+10

Traceback (most recent call

last):

 File "<stdin>", line 1,

NameError: name 'x' is not defined.

Variable x is not initialized and does not

exist.

https://docs.python.org/3/library/exceptions.html#bltin-exceptions

Python Programming Simplified

319

in <module>

NameError: name 'x' is not

defined

>>> '10'+20

Traceback (most recent call

last):

 File "<stdin>", line 1,

in <module>

TypeError: can only

concatenate str (not "int") to

str

TypeError: can only concatenate str

(not "int") to str. You are trying to add

two different kinds of literals: one is

string and second is integer.

The table must have given you some feel of exceptions generated during execution of python code. We

will see detailed python code with full fledged python programs in the coming sections. Lets move on

now to understand the mechanism of exception handling.

13.5 Exception handling mechanism

 In python exceptions are objects which are thrown. All such code which might throw an exception

during the execution of the program must be placed in the try block. We have seen usage of try block in

number of programs earlier. The exception thrown must be caught by the except block. If not caught

your program may terminate abnormally. An exception can be thrown explicitly or implicitly.

Exception can be explicitly using keyword throw. In explicit exception a method must tell what type of

exception it might throw. This can be done by using throws keyword. All other exceptions thrown by

the java run time system are known as implicit exceptions. A finally clause may be put after the try

except block which executes before the method returns. A try block must have a corresponding except

block, though it may have number of except blocks.

This try block is also known as exception generated block or guarded region. The except block is

responsible for catching the exception thrown by the try block. It is also known as exception handler

block. When try throw an exception, the control of the program passes to the except block and if

argument matches, exception is caught. In case no exception is thrown the except block is ignored and

control passes to the next statement after the except block.

The general syntax of exception-handling construct is shown as:

try:

code that may generate exception

except ExceptionClass1 as e1:

code to handle exception

except ExceptionClass2 as e2:

code to handle exception

.

Python Programming Simplified

320

.

.

.

else:

(Optional)

 # executes when no exception is caught

finally:

(Optional)

for some cleanup action

always executes

When you think that your code may throw some exception, you must put that code in try block.

Depending upon code the exception objects thrown may be of different types. To except different types

of exception objects there are different exception classes. These can be specified in except blocks

which can be more than one. In case no exception is thrown the else optional block executes. The

finally block is optional and it always executes regardless of whether an exception is thrown or not.

13.6 Python stack trace

A stack trace provides information on the execution history of the current thread and lists the names of

the classes and methods that were called at the point when the exception occurred. A stack trace is a

useful debugging tool that you’ll normally take advantage of when an exception has been thrown.

Python prints a stack trace whenever your code throws an exception.

Lets see an example to understand stack trace in python.

def demo(index):

 L=[2,3,4]

 print(L[index])

demo(4)

OUTPUT:

Traceback (most recent call last):

 File ”quickstart.py", line 4, in <module>

 demo(4)

 File "quickstart.py", line 3, in demo

 print(L[index])

IndexError: list index out of range

A stack trace report contains the function calls made in your code right before the error occurred. When

your program raises an exception, it will print the stack trace. If you clearly the output from the code, it

gives you lots of information. It tells you that when demo function was called with argument 4 and

error was generated. Further it was because of line print(L[index]) and lastly it prints the actual

exception thrown.

Python Programming Simplified

321

If you go from last line to top line, you will come to know that exception was generated because of line

print(L[index]) and that because of function call demo(). Further that call was made in main function

(default function).

Different types of stack traces will be generated depending upon what type of exceptions are generated

in your code. Lastly stack traces are not visible when you handle the exceptions using try-except block.

13.7 Exception handling using try and except

In this section we see programmatically how exceptions are thrown within try block and handled by the

except block. Let’s start with our first program on exception handling.

First Run of Script

try:

 L=[1,2,3,4]

 x=L[-6]

except IndexError as e:

 print("Exception caught=",e)

else:

 print("else block x=",x)

OUTPUT:

Exception caught= list index out of range

 In second line of try block we are using index as -6 for list L which is out of bounds. Permissible range

is from -4 to 4 as length of L is 4. So line x=L[-6] throws an exception of IndexError type and this

exception is caught by except block in object 3. The same is displayed through print. The object is

internally converted to string by either calling __str__ method or __repr__ method.

Let’s change the line x=L[-6] to L[-2] (valid index) and see the output:

First Run of Script

try:

 L=[1,2,3,4]

 x=L[-2]

except IndexError as e:

 print("Exception caught=",e)

else:

 print("else block x=",x)

OUTPUT:

else block x= 3

This time the index -2 is valid and second last element from list L is displayed in else block as else

block executes only no exception is thrown.

But what if we don’t use else block and write statement outside try-except block. Let’s see what

happens?

try:

 L=[1,2,3,4]

 x=L[-2]

except IndexError as e:

Python Programming Simplified

322

 print("Exception caught=",e)

print("else block x=",x)

OUTPUT:

else block x=3

The output remains same as we got in the previous script as no exception was thrown. But will the

result remain same if exception is thrown? Let’s see.

try:

 L=[1,2,3,4]

 x=L[-6]

except IndexError as e:

 print("Exception caught=",e)

print("else block x=",x)

OUTPUT:

Traceback (most recent call last):

 File "quickstart.py", line 6, in <module>

 print("else block x=",x)

NameError: name 'x' is not defined

Exception caught= list index out of range

Exception was caught by the except block but the line(x=L[-6]) because of exception was generated

didn’t execute, variable x was not defined. As x was not defined we get one more exception

NameError. This exception was not handled so script crashed.

The morale of the story is that else block is always useful when exception is not thrown and should be

used.

Further if you are only interested in catching the exception and ignoring the caught exception object,

you can just write exception class name as: except IndexError. The rewritten except block is shown

below:

except IndexError:

 print("Exception caught=")

Lets have some more examples of handling exceptions of different types.

try:

 x=input("Enter an integer number: ")

 x=int(x)

 s=x*10

except ValueError as e:

 print("Exception caught=",e)

else:

 print("else block s=",s)

print("out of try-except-else block")

Python Programming Simplified

323

OUTPUT:

(First Run Exception not generated)

Enter an integer number: 12

else block s= 120

out of try-except-else block

(Second Run Exception was thrown)

Enter an integer number: 2.3

Exception caught= invalid literal for int() with base 10: '2.3'

out of try-except-else block

In the try block we take an integer using input method and try to parse string integer to integer using int

method. If input is integer, the code multiply the integer value x by 10 and store in s. In case int method

cannot parse the input value into integer it will throw an exception of ValueError type. This exception

will be caught by except block. The last statement is outside the try-except-else block and will always

executes.

There are number of exceptions and all of them cannot be covered in this chapter as python programs.

Instead of this, we explain them in tabular form with brief explanation.

Python code Examples with output Use

try:

 d = {'a':10, 'b':20,

'c':30}

 print (d['d'])

except KeyError as e:

 print ("KeyError

Exception caught= ",e)

else:

 print ("else block no

exception")

KeyError exception is generated when a key

in dictionary is not found.

NOTE: The LookupError exception is base

class for KeyError and IndexError and can

be used for handling both types of

exception.

try:

 print (x)

except NameError as e:

 print ("NameError

Exception=",e)

else:

 print ("else block all

ok")

Name Error is generated when a local or

global name is not found.

try:

 import xyz

except ImportError as e:

 print ("ImportError

ImportError is generated when a module is

not loaded or system having trouble to load

the module.

Python Programming Simplified

324

Exception=",e)

else:

 print ("else block all

ok")

try:

 x=10/0

except ArithmeticError as e:

 print("exception

caught=",e)

else:

 print("worked well")

ArithmeticError is the base class of

errors: OverflowError, ZeroDivisionErr

or, FloatingPointError.

try:

 with open("file.txt") as

f:

 print(f.read())

except IOError as e:

 print("exception

caught=",e)

else:

 print("worked well")

IOError exception is generated when some

error related to input/output happens. Here

file does not exit so an exception is

generated.

13.7.1 Try-Except with Multiple Exceptions

Lets see an example where our code can generate multiple exceptions and we handle these exceptions

using either a single except block or multiple blocks. The general syntax of combining multiple

exceptions in a single except block is:

except (Exceptionclass1,Exceptionclass2,....):

handle exception here

try:

 a=input("Enter first integer number: ")

 a=int(a)

 b=input("Enter second integer number: ")

 b=int(b)

 c=a/b

except (ValueError,ZeroDivisionError) as e:

 print("Exception caught=",e)

else:

 print("else block division= ",c)

print("out of try-except-else block")

OUTPUT:

(First Run)

Enter first integer number: 10

Python Programming Simplified

325

Enter second integer number: 5

else block division= 2.0

out of try-except-else block

(Second Run)

Enter first integer number: 10

Enter second integer number: 0

Exception caught= division by zero

out of try-except-else block

(Third Run)

Enter first integer number: 10

Enter second integer number: 2.5

Exception caught= invalid literal for int() with base 10: '2.5'

out of try-except-else block

 In the program within the try block 2 different types of exception may be thrown: First exception of

type ZeroDivisionError which may be generated when division by zero operation is performed. Second

when instead of integer you input some other data type like float, double, string or even just press

Enter; exception of type ValueError type is thrown. In the first run of the program we simply get the

division of two number as output; No exception is generated and else block executes. In the second run

when 0 is input for denominator, python run time system checks that division by zero operation is

performed which is an illegal operation, so it construct an object of ZeroDivisionError type and throws

it. This thrown exception is caught by the except block which displays the description of the exception

thrown. In the third run of the program we intentionally input float input. As the int method cannot

parse a float string into integer an exception object of ValueError class is generated and thrown. The

thrown object is caught by the except block. Note in both run after handling the exception by the except

block, statements after the try-except block executes as if nothing has happened.

In case you want single except block can be split into multiple except blocks as shown into following

code snippet.

except ZeroDivisionError as e:

 print("Division Error Exception caught=",e)

except ValueError as e:

 print("Value Error Exception caught=",e)

13.7.2 Catching Exceptions with Empty Except

We saw earlier that to except exceptions we have to mention exception classes after the except

keyword. This is one way of catching exceptions. In case you only want to except exception without

worrying what type of exception will be thrown, then there are two different ways. One is covered in

this section and another will be covered in next section. Lets understand this by slightly modifying the

example that we saw in the previous section.

Python Programming Simplified

326

import sys

try:

 a=input("Enter first integer number: ")

 a=int(a)

 b=input("Enter second integer number: ")

 b=int(b)

 c=a/b

except:

 print("Exception caught of type=",sys.exc_info()[0])

else:

 print("else block division= ",c)

OUTPUT:

(First Run)

Enter first integer number: 10

Enter second integer number: 2.3

Exception caught= <class 'ValueError'>

(Second Run)

Enter first integer number: 10

Enter second integer number: 0

Exception caught of type= <class 'ZeroDivisionError'>

The different from the previous code is clearly visible. We have imported sys module for the function

exc_info. The exc_info function of sys module returns a tuple containing three pieces of information:

class name, classname with reason and traceback object at given address. This is shown below for the

current example:

(<class 'ZeroDivisionError'>, ZeroDivisionError('division by zero'), <traceback object at

0x7f36daf22c40>).

In the code we have used the element only at index 0 to show type of exception thrown. For other type

of exception thrown output is different as shown in first run of the code. The advantage of this type of

exception handling is that you don’t have to worry about what kind of exception may be thrown by

your code.

13.7.3 Catching all exceptions using exception class

The other way of handling all types of exception is using parent classes of all exceptions to handle any

exception thrown. The code is shown below:

try:

 a=input("Enter first integer number: ")

 a=int(a)

 b=input("Enter second integer number: ")

 b=int(b)

 c=a/b

except Exception as e:

 print("Exception caught of type=",e)

Python Programming Simplified

327

else:

 print("else block division= ",c)

OUTPUT:

(First Run)

Enter first integer number: 10

Enter second integer number: 3.4

Exception caught of type= invalid literal for int() with base 10: '3.4'

(Second Run)

Enter first integer number: 10

Enter second integer number: 0

Exception caught of type= division by zero

 The code is self-explanatory. In case you want to display the class of exception caught just replace e by

e.__class__ in except block.

13.7.4 Raising Exception

In all the programs of exception handling seen earlier the python run time system was responsible for

throwing the exceptions. All those exceptions come under the category of implicit exceptions. If we

want we can throw exceptions manually or explicitly. For that python provides the keyword raise. The

raise keyword can be used to throw an exception explicitly. This is also known as raising an exception.

The raise statement requires a single argument: an object of any exception class. Lets see a simple

example:

try:

 raise ValueError("Demo of raising exception")

except Exception as e:

 print("Exception caught=",e)

OUTPUT:

Exception caught= Demo of raising exception

 In the try block we are raising an exception explicitly. The exception object is of ValueError type and

it has a string message. This exception is caught by except block in e and is display through print. The

message passed to ValueError constructor is displayed when we print the caught object in except block

using e.

The constructor can be empty and can be an exception of any type python support. Lets see another

example:

try:

 raise LookupError()

except LookupError:

 print("Exception caught")

OUTPUT:

Exception caught

Python Programming Simplified

328

Raising exception is useful when you create your own exceptions and use them to throw explicitly in

programming situations. One such situation would be to check stack is either full or empty.

top=-1

def pop():

 global top

 if (top == -1):

 raise EmptyStackException()

 else:

 obj = stack[top]

 top=top-1

 return obj;

The above is a tiny code snippet (not complete example). When top is -1 we raise an

EmptyStackException. This exception class is already created as our exception class. Note there is no

try and except block shown in the example. As the exception will be raised inside the function. The

function call must be placed inside the try block. Exceptions inside functions are covered next.

As a final example we raise different types of exception inside a for loop.

for i in range(1,4):

 try:

 if(i==1):

 raise ArithmeticError("Arithmetic error exception raised")

 elif(i==2):

 raise RuntimeError("Runtime error exception raised")

 elif(i==3):

 raise NameError("Name error exception raised")

 except Exception as e:

 print("Exception raised=",e.__class__)

OUTPUT:

Exception raised= <class 'ArithmeticError'>

Exception raised= <class 'RuntimeError'>

Exception raised= <class 'NameError'>

The code is self-explanatory. In each iteration of for loop a different type of exception is raised. For

each thrown exception we have just one class to except exception: Exception.

13.7.5 Nesting Of Try Except Block

Just like the multiple except blocks, we can also have multiple try blocks. These try blocks may be

written independently or we can nest the try blocks within each other, i.e., keep one try-except block

within another try-block. The program structure for nested try statement is:

try:

 # outer try

 pass

 # statements

 try:

 # inner try

Python Programming Simplified

329

 pass

 # statements

 except ExceptionClass1 as e:

 pass

 # statements

except ExceptionClass2 as e:

 pass

 # statements

Here outer try block may have some exception to be thrown. That is caught by the outer block. After

processing in outer try block, some codes are to be processed inside the try block. These code may also

throw some exception and will be handled by inner try. That is if outer try catches exception early no

need to process the further statements that may also cause some exception to be thrown. Lets clarify

this using an example.

try:

 a = input("Enter first integer number: ")

 a = int(a)

 b = input("Enter second integer number: ")

 b = int(b)

 try:

 c = a / b

 print("Division=",c)

 except ZeroDivisionError as e:

 print("Exception caught=", e)

except ValueError as e:

 print("Exception caught=",e)

OUTPUT:

(First Run)

Enter first integer number: 10

Enter second integer number: 0

Exception caught= division by zero

(Second Run)

Enter first integer number: 10

Enter second integer number: 2.3

Exception caught= invalid literal for int() with base 10: '2.3'

In the program we are accepting two numbers from the user. After that, the input which are in the string

format, are converted to integers. If the numbers were not received properly in a number format, then

during the conversion a ValueError exception is raised otherwise the control goes to the next try block.

Inside this second try-except block the first number is divided by the second number, and during the

calculation if there is any division error, it is caught by the inner except block

13.8 The Finally Block

There is often some piece of code that you want to execute whether or not an exception is thrown

within a try block. This usually pertains to some operation that is often referred to cleaning operation.

Python Programming Simplified

330

Like flushing memory buffers, closing files etc. To achieve this effect, you use a finally clause at the

end of all the exception handlers. The syntax of try-except-finally is presented here once again :

try:

pass

except Exception1:

pass

except Exception2:

pass

.

.

.

finally:

pass

The finally clause similar to except and try is a block of code by the name finally. The finally executes

all the time irrespective of whether an exception is thrown or not; Even if an exception is thrown and

handled or not handled finally will execute. The finally block is guaranteed to execute after the try-

except block. The finally clause is an optional. Its usage is up to the programmer. If you have placed

try-except block inside a method, then before returning from the method either maturely or prematurely

finally clause will execute. The finally clause is necessary in some kind of cleanup like an open file or

network connection, something you’ve drawn on the screen etc.

Lets see some examples of finally clause:

try:

 x=[1,2,3][5]

except Exception as e:

 print("Exception caught=",e)

finally:

 print("finally executes")

OUTPUT:

Exception caught= list index out of range

finally executes

The code is self explanatory. An exception is thrown as we are try to use index 5 for a list having just

three elements. At the last finally block also executes.

Lets change the code so that exception is not thrown.

try:

 x=[1,2,3][2]

except Exception as e:

 print("Exception caught=",e)

finally:

 print("finally executes")

OUTPUT:

Python Programming Simplified

331

finally executes

As said earlier, finally always executes even if the exception is not thrown. So the output. When the

exception is not thrown and code is static, do we need except block? Lets remove except block.

try:

 x=[1,2,3][2]

finally:

 print("finally executes")

OUTPUT:

finally executes

It worked ! . try-finally together works without except block. But what if an exception is thrown in the

above code. Pretty obvious, it will not be caught, and program is going to crash but finally will execute.

Try yourself.

Lets see an example now where we use try and finally within a function.

def fun():

 try:

 return

 finally:

 print("finally executes")

fun()

OUTPUT:

finally executes

In the function fun we have written only the try and finally block and not except block. In the try block

we simply returned from the function. But note before returning from the function the finally block

executes.

13.9 Creating Your Own Exceptions

To create your own exceptions, you will need to make Exception class as the base class of the class

which you are going to create. As Exception class will be the parent class, all methods and attributes of

Exception class can be used inside this newly created exception class. Lets see few examples:

Our first example is a basic one:

class MyException(Exception):

 def __init__(self,message):

 super().__init__(message)

try:

 raise MyException("Demo of user defined exception")

except MyException as e:

 print("exception caught=",e.__class__)

OUTPUT:

exception caught= <class '__main__.MyException'>

Class MyException is our new exception class that is derived from Exception class. Now we can raise

exception of this class this with a message. For that in the init method we pass a message string and

Python Programming Simplified

332

same we pass to the parent class’s init method (Exception) using super() method. In the main (default is

main method) we raise an exception of this class and except method catches it.

See its so simple to create a user defined exception and raise it.

Lets see another example (not a basic one) where we check sign of a number and if its negative we

throw a user defined exception.

class MyException(Exception):

 def __init__(self,num):

 self.num=num

 def __str__(self):

 return "MyException object thrown with num="+str(self.num)

def check(x):

 print("check called with x=",x)

 if(x<0):

 raise MyException(x)

 print("Returning from function check")

try:

 check(10)

 check(-10)

except MyException as e:

 print("exception caught=",e)

OUTPUT:

check called with x= 10

Returning from function check

check called with x= -10

exception caught= MyException object thrown with num=-10

The MyException class has one int argument constructor which initializes the num. The function has

__str__ method overridden which is called automatically when displaying an object of MyException

class to convert it into String form. In the main when method check is called with negative argument

exception of MyException is thrown. This thrown exception is caught by the except block in e which is

displayed. As object cannot be displayed in this manner, but as we have __str__ method defined in the

MyException class , this method is called and string “MyException Thrown with num=-10” is returned.

Final example in this section is number guessing game where a number will be guessed by user and on

wrong guess we throw exceptions.

class SmallNumber(Exception):

 def __init__(self, message):

 super().__init__(message)

class LargeNumber(Exception):

 def __init__(self, message):

 super().__init__(message)

num=9

while True:

Python Programming Simplified

333

 try:

 n = int(input("Enter a guess(1 to 20): "))

 if n < num:

 raise SmallNumber("number is small, Try again")

 elif n > num:

 raise LargeNumber("number is large, Try again")

 break

 except SmallNumber as e:

 print(e)

 except LargeNumber as e:

 print(e)

print("Congrats! You guessed it right.")

OUTPUT:

Enter a guess(1 to 20): 12

number is large, Try again

Enter a guess(1 to 20): 6

number is small, Try again

Enter a guess(1 to 20): 10

number is large, Try again

Enter a guess(1 to 20): 9

Congrats! You guessed it right.

There are two classes that act as user defined exception classes: SmallNumber and LargeNumber.

When the guessed number is smaller than actual number an exception of SmallNumber type will be

thrown. In case the guessed number is larger than the actual number an exception of LargeNumber type

will be thrown.

In the code the actual number is stored in num and is 9. Using while loop we keep asking user to guess

the number and give hint in the form of thrown exceptions by displaying messages.

13.10 Ponderable Points

1. Syntax errors (also known as parse errors) are errors that occurs during the writing of the

program.

2. Exceptions are runtime errors which a programmer usually does not expect.

3. The root class of all exceptions is BaseException.

4. In python exceptions are objects which are thrown.

5. The try block is also known as exception generated block or guarded region.

6. The except block is responsible for catching the exception thrown by the try block.

7. The finally block is optional and it always executes regardless of whether an exception is

thrown or not.

8. A stack trace provides information on the execution history of the current thread and lists the

names of the classes and methods that were called at the point when the exception occurred.

9. The Exception class can catch all types of exceptions.

10. Raising an exception using raise keyword is an example of explicit exception.

Python Programming Simplified

334

11. To create your own exception, you’ll have to make Exception class as your base class.

Python Programming Simplified

335

14. FILE HANDLING

14.1 Introduction

We all know that RAM is a volatile memory and any data stored in RAM is lost when PC is turned off.

All the programs we have seen so far have made use of RAM. Any data variable that we define in our

program is destroyed when the program execution is over. Also, the outputs generated by the program

are lost.

One solution may be to take printouts of the program and outputs. They may help up to a certain extent

but that is not appropriate for the practical purpose. Therefore in most real word applications data is

stored in text files which is stored permanently on to the hard disk , floppy , Compact Disk or in any

other persistent storage media. These files can be read back again, and can be modified also.

A data file is a collection of data items stored permanently in persistent storage area. The python

language provides the facility to create these data files, write data into them, read back data, modify

them and many more operations. The program data or output can be stored in these files and that

persists even after program execution is over. The data can be read whenever necessary and can be

placed back into the file after modification. The data remain safe provided storage media does not crash

or corrupt.

From permanent storage point of view, a file is a region of memory space in the persistent storage

media and it can be accessed using the built-in library functions available python moduels or by the

system calls of the Operating Systems. High level files are those files which are accessed and

manipulated using standard library functions. For transfer of data they make use of streams. A stream is

a pointer to a buffer of memory which is used for transferring the data. In general stream can be

assumed as a sequence of bytes which flow from source to destination. An I/O stream may be text

stream or binary stream depending upon in which mode you have opened the file. A text stream

contains lines of text and the characters in a text stream may be manipulated as per the suitability. But a

binary stream is a sequence of unprocessed data without any modification. The standard I/O stream or

stream pointers are (for reading) , stdout (for output), and stderr(for error). By default stdin represent

keyboard , stdout and stderr represents monitor or VDU.

Low level files make use of the system-calls of the Operating System under which the program is run.

14.2 File opening, reading and closing

Python provides open() function to open a file. By default, the file is opened in read mode. This

function returns a file object, also called a handle. Using the file handle, we can any operation onto the

file. It is used as:

Python Programming Simplified

336

file_handle=open(filename)

file_handle is any identifier name to handle the file, filename can be a file name in current directory or

complete path to the filename. Lets see some examples:

f1=open("data.txt")

f2=open("/home/drvikasthada/file.txt")

First example is filename present in the current directory and other is absolute path to the file.

Once file is opened without any error (it may throw exception when file trying to read is not present)

the content of file can be read with number of functions. The simplest function is read() that read all

contents of the file in one go.

contents1=f1.read()

contents2=f2.read()

Once operations are done with the file, it can be closed easily by calling close method on file handle as:

f1.close()

f2.close()

Closing a file free up all system resources attached to file and allow the same file to be used by some

other applications or programs. It is a good practice to always close the file after you have done with it.

Having understood the basic concepts of file opening, reading and closing, lets see a complete example

using python script.

f1=open("data.txt")

data=f1.read()

print("**File contents are**")

print(data)

f1.close()

OUTPUT:

File contents are

This is demo of file handling.

This is second line.

The output is self-explanatory but there is a small problem with the above approach. In case the file is

not found or has been deleted or some other issues related to input/output happens, it may crash the

program. The best way to use try-except block as shown below:

try:

 f1=open("data1.txt")

except Exception as e:

 print("Error in file opening=",e)

else:

 data=f1.read()

 print("**File contents are**")

Python Programming Simplified

337

 print(data)

 f1.close()

OUTPUT:

(File does not exist)

Error in file opening= [Errno 2] No such file or directory: 'data1.txt'

As you can see we have put the file-opening code in the try-block. In case there is some error in file

opening an exception will be thrown. Otherwise else block will read from the file, display it and close it.

The most used way to open, read and close the file preferred by most authors and python programmers

is using with clause. See the code below:

with open("data.txt") as f:

 data=f.read()

 print("**File contents are**")

 print(data)

OUTPUT:

File contents are

This is demo of file handling.

This is second line.

The advantage of with statement is that it closes the file automatically as soon as contents within with

are executed even if an exception is raised at some point.

14.3 File Opening Modes

A file can be opened in different types of modes passed as second argument to the open function.

Various modes determine how the file will be opened (reading/writing/appending). Further the file can

be plain ASCII text file or a binary file. All the modes with meaning is shown below:

Table 14.1 : File Opening Modes

S.N Mode Meaning

1. r Opens text file in read mode only and read from

the beginning of the file. It is the default mode.

2. rb Opens binary file(images,video) in read mode

only and read from the beginning of the file. Data

is read in the form of bytes.

3. r+ Opens text file for reading and writing. Places

the pointer in the beginning of the file.

4. rb+ Opens binary file(images,video) for reading and

writing. Places the pointer in the beginning of the

file. Data is read and written in the form of bytes.

5. w Opens text file in write mode. Any existing file

with the same name will be overwritten. Pointer

is placed in the beginning of the file.

Python Programming Simplified

338

6. wb Opens binary file(images,video) in write mode.

Any existing file with the same name will be

overwritten. Pointer is placed in the beginning of

the file. Data is written in the form of bytes.

7. w+ Opens text file for reading and writing. Places

the pointer in the beginning of the file.

8. wb+ Opens binary file(images,video) for reading and

writing. Places the pointer in the beginning of the

file. Data is read and written in the form of bytes.

9. a Opens text file for appending new data to it.

Places the pointer at the end of the file. File is

created if doesn’t exist.

10. ab Opens binary file(images,video) for appending

new data to it. Places the pointer at the end of the

file

11. a+ Opens text file for appending new data to it and

reading . Places the pointer at the end of the file.

12. ab+ Opens binary file(images,video) for appending

new data to it and reading. Places the pointer at

the end of the file

13. x Open the file in exclusive mode. It creates file

when doesn’t exist and gives error if exist.

Most of these modes will be used in examples coming up later in this chapter.

14.4 Reading from file

A simple example of reading from a file was covered earlier. In this section we discuss in details all the

methods to read from the file (text or binary).

14.4.1 The read function

The read function in its simplest form (no argument supplied) reads entire file at once. If you want to

read specific number of characters, then you can supply. Further if your file contains some special

characters then you must supply encoding type as encoding="utf8". See few examples:

with open("data.txt","r") as f:

 print("** whole file read**")

 print(f.read())

OUTPUT:

** whole file read**

This is demo of file handling.

This is second line.

Python Programming Simplified

339

Wow ! I earned $2000.

This kind of example we have seen earlier. Nothing to explain much.

In the next example we read 10 characters at once and then read 20 characters later.

with open("data.txt","r") as f:

 print("**First 10 character read**")

 print(f.read(10))

 print("**Next 20 character read**")

 print(f.read(20))

OUTPUT:

First 10 character read

This is de

Next 20 character read

mo of file handling.

14.4.2 The function readline and readlines

The two functions are used for readling line of text from the file. The function readline reads one line at

a time and readlines returns a list of lines. Lets see there usage in examples:

with open("data.txt","r") as f:

 print(f.readline())

OUTPUT:

This is demo of file handling.

The above code reads just one line from the input file and prints it. If you want to read complete file

line by line just use loop:

f=open("data.txt","r")

line=f.readline()

while line!="":

 print(line,end='')

 line=f.readline()

OUTPUT:

This is demo of file handling.

This is second line.

Wow ! I earned $2000.

The function readline reads a single line from file. When end of file reaches then it returns empty

string. In the code we open the file in read mode and read first line from the file. The while loop

condition checks the end of file as readline function will return empty string if nothing is remaining in

file to read. Inside while loop we print the line read before the while loop and keep reading line again.

The method readline also takes an integer parameter: number of characters to read from the current line.

Try it out.

There is an easy and efficient way to read a file line by line using for loop without using readline

method. See below:

Python Programming Simplified

340

with open("data.txt","r") as f:

 for line in f:

 print(line,end='')

OUTPUT:

This is demo of file handling.

This is second line.

Wow ! I earned $2000.

The for loop reads file line by line and using print we display the same. Named parameter end is set to

empty string otherwise extra newline will be inserted.

The readlines method

The readlines function reads all lines from a file and returns a list containing each line as element of the

list. See the method in action:

with open("data.txt","r") as f:

 print(f.readlines())

OUTPUT:

['This is demo of file handling.\n', 'This is second line.\n', 'Wow ! I

earned $2000.\n']

As you can see, readlines method returns a list of lines present in the file.

14.5 Writing to File

To write into a file in Python, we need to open it in write ,append or exclusive creation mode. Lets

open/create a file in write mode and write some data into it. As discussed earlier in file opening modes,

if you open a file in write mode and file already exist, all its contents will be destroyed. So be careful in

using this mode.

There are two methods available in python for writing to file:write and writelines. The write is used to

write one single line to the file and writelines can take a list of lines to write to the file. The write

method returns the number of characters written while writelines method returns None.

See some examples to see these methods in action:

with open("newfile.txt","w") as f:

 print(f.write("First rule never give up\n"))

 print(f.write("Second rule never give up\n"))

 print(f.write("third rule remember first two rules"))

OUTPUT:

25

26

35

The file was not present in the current directory and it gets created. The three write method writes their

contents to the file one per line and returns number of characters written.

In the next example we write the complete list to the new file “newfile1.txt” in just one single line

using writelines method.

Python Programming Simplified

341

L=["First Line\n","Second Line\n","Third Line\n"]

with open("newfile1.txt","w") as f:

 print(f.writelines(L))

OUTPUT:

None

14.5.1 Reading and writing

Lets see few examples where we create a new file and write into it. After that we open the same file

again but in reading mode and display the contents that was written.

print("**File Writing and Reading**")

print("*Writing to File*")

with open("newfile.txt","w") as f:

 f.write("First rule never give up\n")

 f.write("Second rule never give up\n")

 f.write("third rule remember first two rules")

print("*Reading from File*")

with open("newfile.txt","r") as f:

 for line in f:

 print(line,end='')

OUTPUT:

File Writing and Reading

Writing to File

Reading from File

First rule never give up

Second rule never give up

third rule remember first two rules

In the code above we create a new file “newfile.txt” and write some lines into it. The file get auto

closed after with block is over. The file is opened again in read mode and contents are displayed.

If you don’t want to close the file, there is another way around. The file can be opened in “w+” mode

so writing and reading both are possible. Lets see this in action.

print("**File Writing and Reading**")

print("*Writing to File*")

f=open("newfile.txt","w+")

f.write("First rule never give up\n")

f.write("Second rule never give up\n")

f.write("third rule remember first two rules")

print("*Reading from File*")

f.seek(0)

for line in f:

 print(line,end='')

OUTPUT:

File Writing and Reading

Python Programming Simplified

342

Writing to File

Reading from File

First rule never give up

Second rule never give up

third rule remember first two rules

The file is opened in “w+” mode so file can be used for both reading and writing. Once the contents are

written to the file, file handle points to the end of the file. To read from file the handle has to be brought

back to the beginning. This is done using seek function. The parameter is the offset from which

position. Default is beginning. So the line f.seek(0) bring back the file handle to the beginning of the

file. After that file contents are read and displayed.

14.5.2 Appending data to file

The new contents can be added to an existing file by opening in append mode. Here we see an example

to open a file in “a+” mode so file can be opened for appending and reading.

print("**File Appending and Reading**")

print("*Appending to File*")

f=open("newfile.txt","a+")

f.write("New Contents added")

f.seek(0)

print("*Contents read from file*")

for line in f:

 print(line,end='')

f.close()

OUTPUT:

Appending to File

Contents read from file

First rule never give up

Second rule never give up

third rule remember first two rules

New Contents added

14.6 Working with multiple files

At times we require to work with multiple files in different modes. Here in this section we see two

examples where more than one is used at the same time to carry out required task.

def file_copy(src,dest):

 try:

 f1=open(src,"r")

 f2=open(dest,"w")

 except Exception as e:

 print("File error=",e)

 else:

 f2.write(f1.read())

 f1.close()

Python Programming Simplified

343

 f2.close()

 print("File Copied Successfully")

if __name__=="__main__":

 file_copy("demo.txt","newdemo.txt")

OUTPUT:

File Copied Successfully

 We have written a function for copying one file to another file. The source file is opened in read mode

and destination file in write mode. The source file must exist else exception will be thrown. In the else

block the file is copied simply by:

f2.write(f1.read()

The other example is where we have two different files:names.txt and snames.txt. First file will be

having 3 names and other file the surnames corresponding to the names stored in first file. The names

and surnames will be first written to the files. Later both the files will be opened and full names will be

shown. See the code in action:

f1=open("names.txt","w+")

f2=open("sname.txt","w+")

names=["Namit\n","Juhi\n","Purvi\n"]

snames=["Sharma\n","Jain\n","Jindal\n"]

print("*Writing names to first file*")

f1.writelines(names)

print("*Writing surnames to second file*")

f2.writelines(snames)

f1.seek(0)

f2.seek(0)

print("*Displaying fullnames*")

for (name,sname) in zip(f1,f2):

 print(str(name).strip()+" ",end='')

 print(str(sname).strip())

OUTPUT:

Writing names to first file

Writing surnames to second file

Displaying fullnames

Namit Sharma

Juhi Jain

Purvi Jindal

 We first create two files and write names and surnames to respective files. After writing names and

surnames we set the file pointer back to position 0 from beginning. To display fullnames the following

code has been used:

for (name,sname) in zip(f1,f2):

 print(str(name).strip()+" ",end='')

 print(str(sname).strip())

In each iteration of the for loop a line is read from each file and stored in name and sname. The zip

method zipps the file handles so data from both the files can be read together. The print method deserve

Python Programming Simplified

344

some explanation. During writing we have used \n after every name and same create issues while

reading back from file. See the output without using strip method when for loop is used as:

for (name,sname) in zip(f1,f2):

 print(name," ",sname,end='')

OUTPUT:

Namit

 Sharma

Juhi

 Jain

Purvi

 Jindal

To remove extra newline character when reading back from file we have used strip method.

14.7 Random Access in File

Random access means reading data randomly from any where in the file. For this purpose, we need to

set the position of the file pointer first in the file and then read the data. One example using seek

function we have seen in few examples. Python provide two functions: seek and tell. The seek function

is for the manipulation of file pointer anywhere in the file and tell function returns the current position

of the pointer. With the help of these functions, we can access data in a random fashion.

1. The seek function

The syntax of seek function is:

seek(offset, where)

The method sets the file pointer to offset relative to parameter where. The offset can be positive or

negative integer. The where parameter can have 0(begining of file stream or constant SEEK_SET),

1(current state of file stream or constant SEEK_CUR) and 2(end of file stream or constant

SEEK_END). To use constants mentioned in the previous line you must import os module and use

them as: os.SEEK_SET

In python 3 onwards seeking to text files is allowed only from beginning and not from current position

or end. For more details please refer python documentation. There is a way to achieve negative offset

when where is SEEK_CUR or SEEK_END but that has its own issues. The method is to open file in

binary mode.

2. The tell function

The tell function returns the current position of the file pointer. If you open the file in read or write

mode and print f.tell() it will print 0 and if you open file in append mode if will print number of

characters in the file.

Lets see one example to understand both the functions:

f=open("alphabets.txt","w+")

f.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ\n")

name=''

move pointer to position 15 (P) and read 1 character

f.seek(15)

Python Programming Simplified

345

name=name+f.read(1)

print("Current Position after f.seek(15)=",f.tell())

move pointer to position 0 (A) and read 1 character

f.seek(0)

name=name+f.read(1)

print("Current Position after f.seek(0)=",f.tell())

move pointer to position 17(R) and read 1 character

f.seek(17)

name=name+f.read(1)

print("Current Position after f.seek(17)=",f.tell())

move pointer to position 8 (I) and read 1 character

f.seek(8)

name=name+f.read(1)

print("Current Position after f.seek(8)=",f.tell())

print("Name read through random access= ",name)

f.close()

OUTPUT:

Current Position after f.seek(15)= 16

Current Position after f.seek(0)= 1

Current Position after f.seek(17)= 18

Current Position after f.seek(8)= 9

Name read through random access= PARI

 We have created a file and written capital letter alphabets into it. Using seek we set the position of

pointers to read the characters of string “PARI”. After setting position for each character we read

character at that position. Note after reading one character the file pointer moves to next position. This

was clarified using tell function. Finally after reading all the characters of our desired name, we display

the same.

14.8 Working with numbers

So far we have worked with only text data. At times we may have some numeric data stored in file and

we want to process that data. Python has no specialized file functions to work with numeric data. The

functions that we have seen are to be used for dealing with numeric data. In this section we work with

numeric data with the files and see how can we process and manipulate the data stored in files.

Lets work with our first example:

f=open("mynums.txt","w")

f.writelines(["10\n","20\n","30\n","50\n"])

f.close()

f = open("mynums.txt", 'r')

data = f.readlines()

sum=0

for line in data:

 sum=sum+int(line.strip())

print("Sum=",sum)

f.close()

OUTPUT:

Sum=110

Python Programming Simplified

346

We have created a file “mynums.txt” and put some numbers into the file but note that numbers have

been inserted into string format. This is required as write and writelines method only work with string

data. Once the data has been written file is closed and opened again in read mode. All the lines within

the file are read using readlines method are processed using for loop. Each line read from the file is in

string format. The extra newline character is removed using strip method and converted to integer. In

case the file has a mix of float and integer data then use float method for conversion as it can handle

both int and float type data in string format.

But what if the file has string, integer and float type data like shown below:

contents of file newfile.txt

10

20

40

4.5

5.5

True

2.5

hello

In this case we must make sure string data does not crash our program or gives error. The solution is to

use exception handling when float cannot convert string data. See code below:

def check_data(x):

 try:

 val = float(x)

 return (val,True)

 except ValueError:

 val=x

 return (val,False)

f = open("newfile.txt", 'r')

data = f.readlines()

sum=0

for line in data:

 (v,status)=check_data(line.strip())

 if status:

 sum=sum+v

print("Sum=",sum)

f.close()

OUTPUT:

Sum=82.5

 We have written a method check_data to check data is in float or integer string. If it is then it is parsed

to float and (val,True) is returned. In case exception ValueError is generated then it means data is pure

string and (val,False) is returned.

In the for loop the returned values are stored in v and status. If status is True then v value is added to

sum else nothing is done. In the end the sum is displayed.

The next example is to deal with when we more than one numeric data in different lines like as shown

below:

Python Programming Simplified

347

file newfile.txt

10 20 40

4.5 5.5 True

2.5 hello

Here the numbers are separated by space but it can be some other value also. How to read this type of

file and find sum of each line. Lets see the next code:

def check_data(x):

 try:

 val = float(x)

 return (val,True)

 except ValueError:

 val=x

 return (val,False)

f = open("newfile.txt", 'r')

data = f.readlines()

sum=0

linec=1

for line in data:

 for x in line.split():

 (v,status)=check_data(x.strip())

 if status:

 sum=sum+v

 print("Sum of line ",linec,"=",sum)

 linec+=1

 sum=0

f.close()

OUTPUT:

Sum of line 1 = 70.0

Sum of line 2 = 10.0

Sum of line 3 = 2.5

 Here to process each line we have one more for loop that splits the line using split method. Default to

split on space. If your file has some other separator like : or ; then pass the same as argument to split

function. The same function check_data is used to check each element after line split is a number or

string. Accordingly we find sum and display the result for each line.

14.9 Working with binary mode

Binary files are those files where data is stored in terms of sequence of bytes either in 8 bit or 16 bits.

are not human readable but they are well understood by their respective applications. Text files can be

easily opened and read but its difficult to comprehend binary files. All video,audio, image files are

binary files.

Working with binary mode is simple in python. You just need to used “rb” or “br” for reading or “wb”

or “bw” is for writing. They use the same function as worked with text files but the data is read and

written in the form of bytes.

Lets see some examples:

Python Programming Simplified

348

data =[65,66,67,68,127,128]

buffer = bytes(data)

print(buffer)

f = open("binary.txt", "bw")

f.write(buffer)

f.close()

f = open("binary.txt", "br")

print(f.read())

f.close()

OUTPUT:

b'ABCD\x7f\x80'

b'ABCD\x7f\x80'

 The data list contains some ASCII code and converted into bytes. A file “binary.txt” is opened in

binary mode for writing and byte contents are written to the file. After the same file is read back and

contents are displayed. As seen from the output the contents are in bytes and last two bytes are not

readable.

Lets have one more example:

f=open("myfile","wb+")

f.write(b"hello to binary")

f.seek(0)

data = f.read()

print(data.decode())

f.close()

OUTPUT:

hello to binary

 When a file is opened in binary mode you can only write bytes to it. To convert string to bytes either

user bytes function or use b as prefix to string. While reading back from file use decode function to get

back in string form else output will remain in byte form.

If you remove decode function above, output will be:

b'hello to binary'

In most networking protocols or communication data is transferred in the form of bytes so it is

recommended to use bytes function with proper encoding and decode function while decoding (reading

back). See the modified code:

f=open("myfile","wb+")

buffer=bytes("hello to binary",encoding="utf8")

f.write(buffer)

f.seek(0)

data = f.read()

print(data.decode())

f.close()

def check_data(x):

 try:

 val = int(x)

Python Programming Simplified

349

 return True

 except ValueError:

 try:

 val = float(x)

 return True

 except ValueError:

 val=x

 return False

f = open("newfile.txt", 'r')

data = f.readlines()

sum=0

for line in data:

 if check_data(line.strip()):

 sum=sum+float(line.strip())

print(sum)

f.close()

14.10 Files and Objects

Python allow you to store virtually any type of objects into the file be it integer, string, float,list,

dictionary or even user defined objects of classes. In this section we are going to see some of the

modules that help you to achieve this persistence of objects. Storing objects into the file is known as

serialization and reading them back is de-serialization.

14.10.1 Picking objects

The very common module for storing the objects into file and reading them back is pickle module. This

module is part of the standard python library and very popular for serialization and deserialization.

To store any object into file just use dump method and to read back just use load method. Lets have a

very simple example:

import pickle

f=open("pick1.pkl","wb+")

a="Hello"

pickle.dump(a,f) # dumping to file

f.seek(0)

del a

a=pickle.load(f) # reading back from file

f.close()

print("Data read from file")

print(a)

OUTPUT:

Data read from file

Hello

 In the first line the module pickle is imported. A file “pick1.pkl” is created. Its not necessary to have

pkl extension but file mode must be binary. In the example we have just dumped one string into the file

using dump method and read the same from the file using load method. Before reading the data back

Python Programming Simplified

350

from file we have deleted the variable a, just to make sure that a is initialized with the data read from

the file.

Note in the above example we have dumped the data and load in the same program. Usually we

dumped the data and load it later from the same file in another script. Try it yourself.

In another code shown below instead of just one object we are dumping multiple objects and loading

them back.

import pickle

f=open("pick1.pkl","wb+")

a="hello"

b=[1,2,3,4]

c=12.34

d={"a":200,"b":234}

pickle.dump(a,f)

pickle.dump(b,f)

pickle.dump(c,f)

pickle.dump(d,f)

f.seek(0)

del a,b,c,d

a=pickle.load(f)

b=pickle.load(f)

c=pickle.load(f)

d=pickle.load(f)

f.close()

print("Data read from file")

print(a,b,c,d,sep=",")

OUTPUT:

Data read from file

hello,[1, 2, 3, 4],12.34,{'a': 200, 'b': 234}

The code is self-explanatory.

The next example is dumping and loading user-defined objects.

import pickle

class Employee:

 def __init__(self,name,sal,job):

 self.name=name

 self.sal=sal

 self.job=job

 def __str__(self):

 s="Name="+self.name

 s=s+"\t"+"Salary="+str(self.sal)+"\t"

 s=s+"Job="+self.job

 return s

if __name__=="__main__":

 f=open("objects.pkl","wb+")

 e1=Employee("Naman",30000,"Trainer")

 e2=Employee("Juhi",60000,"Analyst")

 print("Dumping to file")

 pickle.dump(e1,f)

Python Programming Simplified

351

 pickle.dump(e2,f)

 del e1,e2

 f.seek(0)

 print("Loading from file")

 e1=pickle.load(f)

 e2=pickle.load(f)

 print("Employee 1")

 print(e1)

 print("Employee 2")

 print(e2)

OUTPUT:

Dumping to file

Loading from file

Employee 1

Name=Naman Salary=30000 Job=Trainer

Employee 2

Name=Juhi Salary=60000 Job=Analyst

 We have a class Employee with three fields: Name, sal and job. We create objects of this class and

dump to file using pickle module. After loading back from file the same objects we delete them and

read them back. To display objects as string we have written __str__ method that is called

automatically when the object is displayed using print method.

There is an issue with the code above. If you create the class and dump the objects in one file and read

them in another file you are going to have error. The error will be because class definition is not present

in the second file. This is a serious issue as the code to read the pickle file “objects.pkl” may be read

any where on any system and programmer may not aware about class definition except the members of

the class.

For example after creation of file “objects.pkl” if we try to read it in some other file and load object of

Employee class see what happens:

import pickle

f=open("objects.pkl","rb")

e1=pickle.load(f)

OUTPUT:

AttributeError: Can't get attribute 'Employee' on <module '__main__' from

'quickstart.py'>

The solution is discussed in the next section.

14.10.2 The dill module

The dill module extends upon pickle module with some extra functionality. The dill module is not part

of standard python module and must be installed as: pip install dill.

The dill module has same dump and load method and same syntax but extra functionality the dill

module provides it that it saves an entire session of the python interpreter using one single command in

a pickle file and same file can be used anywhere in another python session again using a single python

command.

Python Programming Simplified

352

Lets change out previous code using dill module. In the left column we have the code that writes two

employee objects in “objects.pkl” file using dill module. In the right column (a different python script)

is written that is totally independent of first python script. This script loads the object from file and

display the two employee objects without any error.

import pickle

class Employee:

 def __init__(self,name,sal,job):

 self.name=name

 self.sal=sal

 self.job=job

 def __str__(self):

 s="Name="+self.name

s=s+"\t"+"Salary="+str(self.sal)+"\t"

 s=s+"Job="+self.job

 return s

if __name__=="__main__":

 f=open("objects.pkl","wb+")

e1=Employee("Naman",30000,"Trainer")

e2=Employee("Juhi",60000,"Analyst")

 pickle.dump(e1,f)

 pickle.dump(e2,f)

f.close

import dill

f=open("objects.pkl","rb")

print("Loading from file")

e1=dill.load(f)

e2=dill.load(f)

print("Employee 1")

print(e1)

print("Employee 2")

print(e2)

OUTPUT:

Loading from file

Employee 1

Name=Naman Salary=30000

 Job=Trainer

Employee 2

Name=Juhi Salary=60000

 Job=Analyst

The other way to save everything and read it later you can save the entire session of python shell and

load it later. See an example:

>>> class demo:

... pass

...

>>> d1=demo()

>>> d1.x=20

>>> d1.y=30

>>> d2=demo()

>>> d2.x=2.4

>>> d2.y=3.6

>>> import dill

>>> dill.dump_session("demo.pkl")

>>> exit()

Python Programming Simplified

353

As you can see the complete session has been dumped into file “demo.pkl” using dump_session

function. The last line is exit() to come out from python shell. Now load the session stored in

“demo.pkl” in a new python session:

>>> import dill

>>> dill.load_session("demo.pkl")

>>> (d1.x,d1.y)

(20, 30)

>>> (d2.x,d2.y)

(2.4, 3.6)

One more good feature of using dill is that it allow us to store lambda functions as property of class

objects or can store them directly. See our final example:

import dill

class demo:

 pass

d=demo()

d.sum=lambda x,y:x+y

f=open("demo.pkl","wb+")

sqr=lambda x:x*x

dill.dump(sqr,f)

dill.dump(d,f)

f.seek(0)

sqrf=dill.load(f)

obj=dill.load(f)

print(sqrf(2))

print(obj.sum(2,3))

f.close()

OUTPUT:

4

5

 Two lambda functions are created in this script. One is general and second as property of the class.

Both are dumped using dump function of dill module. After dumping file position is set to 0 using seek

both the functions are loaded and used in print function.

14.11 Ponderable Points

1. A data file is a collection of data items stored permanently in persistent storage area.

2. The standard I/O stream or stream pointers are (for reading) , stdout (for output), and stderr(for

error). By default stdin represent keyboard , stdout and stderr represents monitor or VDU.

3. Python provides open() function to open a file. By default, the file is opened in read mode.

4. The function read() that read all contents of the file in one go.

5. The function readline reads one line at a time and readlines returns a list of lines.

6. To write into a file in Python, we need to open it in write ,append or exclusive creation mode.

7. Python provide two functions: seek and tell. The seek function is for the manipulation of file

pointer anywhere in the file and tell function returns the current position of the pointer.

Python Programming Simplified

354

8. Binary files are those files where data is stored in terms of sequence of bytes either in 8 bit or 16

bits. are not human readable but they are well understood by their respective applications.

9. Storing objects into the file is known as serialization and reading them back is de-serialization.

10. For reading and writing objects module pickle and dill can be used.

Contents

1. STARTING WITH PYTHON .. 1

2. OPERATORS & EXPRESSIONS ... 58

3. DECISION MAKING ... 94

4. LOOPING .. 112

5. FUNCTIONS ... 140

6. STRINGS IN PYTHON .. 185

7. LIST .. 211

8. DICTIONARY ... 237

9. TUPLE.. 250

10. MODULES IN PYTHON ... 257

11. CLASSES AND OBJECTS .. 266

12. INHERITANCE .. 283

13. EXCEPTION HANDLING .. 316

14. FILE HANDLING ... 335

